首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Questions: How does the seed bank respond to different types of tree‐fall gaps and seasonal variations? How does the soil seed bank influence recovery of the standing vegetation in the mature forest and tree‐fall gaps? Location: 1800 — 2020 m a.s.l., Quercus‐Pinus forest, Baja California Sur, Mexico. Methods: Seed size, species composition and germination were estimated under different environmental conditions during dry and rainy seasons: a mature forest plot and gaps created by dead standing trees, snapped‐of f trees and uprooted trees. The soil seed bank was investigated using direct propagule emergence under laboratory conditions, from soil cores obtained during both seasons. Results: 21 species, 20 genera and 14 families constitute the seed bank of this forest community. Fabaceae, Asteraceae, Euphorbiaceae and Lamiaceae were the most frequently represented families in the seed bank. Floristic composition and species richness varied according to the different modes of tree death. Species composition of seed banks and standing vegetation had very low similarity coefficients and were statistically different. Seed bank sizes varied between 164 and 362 ind.m‐2 in the mature forest plot for the dry and rainy seasons, respectively, while soil seed bank sizes for gaps ranged between 23–208 ind.m‐2 forthe dry season and between 81–282 ind.m‐2 for the rainy season. Conclusions: Seed bank sizes and germination response were always higher in the rainy season under all the environmental conditions analysed. Results suggest that timing responses to gap formation of the soil seed bank could be more delayed in this temperate forest than expected.  相似文献   

2.
方青慧  杨晶  张彩军  张倩  苏军虎 《生态学报》2022,42(4):1619-1628
为明晰放牧对高原鼢鼠(Eospalax baileyi)造丘活动的影响,于2019年5月、8月和10月分别对禁牧(No grazing,NG)、生长季休牧(Rest grazing in growing season,RG)、传统放牧(Traditional grazing,TG)和连续放牧(Continuous grazing,CG)4种放牧管理模式样地下高原鼢鼠的新鼠丘(2个月内形成)半径、高度、表面积和体积等进行测定,并分析其表面积、体积与土壤和植被生物量间的关系。结果发现:放牧管理模式显著影响了高原鼢鼠鼠丘形态特征,且具有季节性差异。NG下鼠丘的半径、表面积和体积最大,而CG下鼠丘的体积和表面积显著变小(P<0.05),在8月和10月,鼠丘半径在CG样地显著小于其他3种放牧模式样地(P<0.05);8月TG下鼠丘高度最高,而5月和10月NG下鼠丘高度最高,鼠丘高度在CG样地显著小于NG样地(P<0.05)。冗余分析2个排序轴几乎全部解释了土壤因子及地下生物量与鼠丘特征之间的关系,但各放牧管理模式下影响因子不同,NG样地的土壤容重(P<0.05)、土壤紧实度(P<0.01)和莎草科植物的地上生物量(P<0.01),RG样地的地下生物量(P<0.01)、土壤紧实度(P<0.01)和豆科植物的地上生物量(P<0.01),TG样地的禾本科和豆科植物的地上生物量(P<0.01),CG样地的土壤水分、地下生生物量、土壤紧实度(P<0.05)和莎草科植物的地上生物量(P<0.01)均显著影响了鼠丘的形态特征。可见,放牧会影响高原鼢鼠的鼠丘形态特征,进而对草地的演替产生不同的影响。  相似文献   

3.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

4.
Grazing is one of the major anthropogenic driving factors influencing community structure and ecological function of grasslands. Fencing has been proved to be one of the main measures for rehabilitating degraded grasslands in northwestern China. However, data from combined empirical studies on the effects of different management regimes in desert grasslands are lacking. So we selected long‐term fencing (fenced since 1991), mid‐term fencing and seasonal fencing (fenced since 2002), and adjacent free‐grazing grasslands to investigate vegetation and soil properties on southwest Mu Us desert. Our results showed that fencing increased plant cover, height, aboveground biomass (AGB) of different plant life‐form groups, Shannon–Wiener diversity index, Evenness index, Simpson index, total soil nitrogen, total soil phosphorus, and soil organic matter, but decreased plant density, species richness, Richness index, soil bulk density, water content, and pH. However, 22–24 years of long‐term complete fencing might cause redegradation of vegetation and soil nutrients, characterized by the reduction of some vegetation properties, biodiversity, total AGB, and some soil properties. Seasonal fencing with 11–13 year was more beneficial to vegetation restoration than that with completely fencing measures. Our study suggests that appropriate artificial disturbances, such as seasonal fencing (winter grazing and summer fencing), should be used after long‐term fencing in order to maintain grassland productivity and biodiversity. These findings will help to provide theoretical support for vegetation restoration and sustainable management in grassland under grazing prohibition at Mu Us desert.  相似文献   

5.
Abstract. This paper describes the effects of re‐establishing seasonal cattle grazing by 0.7 animal.ha‐1 on vegetation in a long‐term abandoned, and partly degraded, semi‐natural mountain pasture in the ?umava National Park, Czech Republic. There was very uneven grazing intensity inside the locality, and grazing preference changed during the season: cattle grazed most of the time in productive but species‐poor Deschampsia cespitosa swards, but changed to a species‐rich Violion caninae stand in the middle of the summer. A species‐rich Carex rostrata community was only grazed at the end of the season. Species‐poor swards dominated by Nardus stricta and Carex brizoides were mainly used as resting areas. Both grazing and excluding from grazing had a negative effect on species diversity of the Deschampsia cespitosa swards. The soil seed bank contained only few species that are characteristic of mountain grassland communities, and seed dispersal of the target species by cattle dung was also found to be very limited. Thus both grazing and exclusion from grazing are probably of limited value for the restoration of species‐rich grasslands from species‐poor Deschampsia cespitosa swards in this case.  相似文献   

6.
Question: Is soil hydrology an important niche‐based driver of biodiversity in tropical forests? More specifically, we asked whether seasonal dynamics in soil water regime contributed to vegetation partitioning into distinct forest types. Location: Tropical rain forest in northwestern Mato Grosso, Brazil. Methods: We investigated the distribution of trees and lianas ≥ 1 cm DBH in ten transects that crossed distinct hydrological transitions. Soil water content and depth to water table were measured regularly over a 13‐month period. Results: A detrended correspondence analysis (DCA) of 20 dominant species and structural attributes in 10 × 10 m subplots segregated three major forest types: (1) high‐statured upland forest with intermediate stem density, (2) medium‐statured forest dominated by palms, and (3) low‐statured campinarana forest with high stem density. During the rainy season and transition into the dry season, distinct characteristics of the soil water regime (i.e. hydro‐indicators) were closely associated with each vegetation community. Stand structural attributes and hydro‐indicators were statistically different among forest types. Conclusions: Some upland species appeared intolerant of anaerobic conditions as they were not present in palm and campinarana sites, which experienced prolonged periods of saturation at the soil surface. A shallow impermeable layer restricted rooting depth in the campinarana community, which could heighten drought stress during the dry season. The only vegetation able to persist in campinarana sites were short‐statured trees that appear to be well‐adapted to the dual extremes of inundation and drought.  相似文献   

7.
Information on the response of vegetation to different environmental drivers, including rainfall, forms a critical input to ecosystem models. Currently, such models are run based on parameters that, in some cases, are either assumed or lack supporting evidence (e.g., that vegetation growth across Africa is rainfall‐driven). A limited number of studies have reported that the onset of rain across Africa does not fully explain the onset of vegetation growth, for example, drawing on the observation of prerain flush effects in some parts of Africa. The spatial extent of this prerain green‐up effect, however, remains unknown, leaving a large gap in our understanding that may bias ecosystem modelling. This paper provides the most comprehensive spatial assessment to‐date of the magnitude and frequency of the different patterns of phenology response to rainfall across Africa and for different vegetation types. To define the relations between phenology and rainfall, we investigated the spatial variation in the difference, in number of days, between the start of rainy season (SRS) and start of vegetation growing season (SOS); and between the end of rainy season (ERS) and end of vegetation growing season (EOS). We reveal a much more extensive spread of prerain green‐up over Africa than previously reported, with prerain green‐up being the norm rather than the exception. We also show the relative sparsity of postrain green‐up, confined largely to the Sudano‐Sahel region. While the prerain green‐up phenomenon is well documented, its large spatial extent was not anticipated. Our results, thus, contrast with the widely held view that rainfall drives the onset and end of the vegetation growing season across Africa. Our findings point to a much more nuanced role of rainfall in Africa's vegetation growth cycle than previously thought, specifically as one of a set of several drivers, with important implications for ecosystem modelling.  相似文献   

8.
Abstract. When management, in the form of cattle grazing and mowing, ceases the abundance of competitively superior plant species tends to increase in abandoned semi‐natural meadows. Litter accumulation elevates the soil nutrient levels and hinders seedling recruitment. We surveyed changes in plant cover and species composition of a formerly grazed meadow in permanent plots for six years. Some plots were unmown, while others were mown and raked annually in August. The cover of grasses decreased and herb cover remained unchanged regardless of the treatment. Mowing and raking significantly reduced litter accumulation and increased the number of ground layer species. The expected long‐term effects of abandonment and restorative mowing were studied by calculating the transition probabilities for unmown and mown plots and simulating the course of succession as projected by the transition matrices. During a simulation period of 30 yr, abandonment led to (1) a decrease in the cover of small herbs, (2) a slight increase in the cover of tall herbs and (3) a slight decrease in the cover of grasses. In contrast, the cover of small herbs on the mown plots remained unchanged or slightly increased during the course of simulation. These results suggest that mowing late in the season is primarily a management tool for the maintenance of the existing species diversity and composition. However, it may not be an effective restorative tool to induce overall changes in the resident vegetation of abandoned grass‐dominated meadows. Grazing or mowing early in the season may be more effective in this respect. Consequently, mowing early or, alternatively, late in the season may provide management strategies for the maintenance and restoration of species diversity, respectively.  相似文献   

9.
Summary An important conservation question for grazed areas of lowland subhumid Tasmania is ‘what effects do different, practical disturbance regimes have on native vegetation?’ An experiment designed to determine the single and interactive effects of fire and sheep grazing was established at four sites with distinct vegetation types. There were significant interactive effects of fire and sheep grazing on vegetation attributes at all sites. An analysis of published and new data indicated that there were several vascular plant species that appeared dependent on sheep grazing for their persistence in the present landscape, while there were others that were intolerant of this disturbance but required other types of disturbance, such as mowing. However, most native species appeared to survive in a wide variety of disturbance regimes short of ploughing and fertilization. The implications of these results are that a variety of disturbance regimes is necessary to maintain biological diversity in this environment, and that the naturalness of the regime is not necessarily relevant to its use for conservation.  相似文献   

10.
杨效东 《生态学报》2003,23(5):883-891
通过模拟刀耕火种过程 ,对刀耕火种前后的次生林、旱稻地 (第 2年 )和火烧迹地 (火烧后直接撂荒地第 2年 )土壤节肢动物群落结构特征及季节变化进行了调查研究。结果显示 :3块样地土壤节肢动物群落的优势类群组成相同 ,均为蜱螨目、膜翅目和弹尾目 ,但不同生境样地中各优势类群所占群落总数的比例不同 ,并且 3样地常见和稀有类群的组成差异较大 ;土壤节肢动物类群数、个体数和 DG多样性指数表现为次生林高于其它 2块样地 ,而旱稻地和火烧迹地则无较大差异 ,但一些类群在旱稻地、火烧迹地的数量分布与次生林具有差异 ,且在土壤层的表现较为突出 ;3块样地土壤节肢动物群落具有较好相似性 ,其中旱稻地与火烧迹地达到极相似水平 (D、DS>0 .9)。3种不同类型生境土壤节肢动物群落在类群数、个体数和多样性指数的季节变化总体呈现出雨量少的干季或雨季初末期高于雨量最大的雨季中期 ,与当地降雨量和气温变化有密切关系 ,同时各样地土壤节肢动物群落因生境条件不同及人为活动干扰强弱而形成各自的季节消长特点。研究表明刀耕火种后的旱稻种植对土壤节肢动物群落的恢复和发展在一定限制条件 (面积、周围次生林和坡度 )下无破坏性影响 ,但植被改变、农事活动等对直接撂荒地和旱稻地土壤节肢动物群落的季节消长产生  相似文献   

11.
Question: What is the impact of grazing and/or afforestation on grassland diversity, species composition and cover parameters? Location: Semi‐arid Mediterranean grasslands of Jordan. Methods: Vegetation, litter, bare soil and rock cover were compared among four management types – free grazing and protected from grazing with three levels of tree cover. Species composition, plant cover, species richness and evenness were used to evaluate differences in vegetation among management types. Species composition differences among management types were also investigated. Results: Semi‐arid Mediterranean grasslands harbour appreciable levels of plant biodiversity. Grazing did not affect plant diversity, indicating the high resilience against and adaptation to grazing; however,grazing affected species composition and cover parameters. Afforestation seems to protect soil through higher litter cover but its impact on plant biodiversity was negative and markedly affected species composition. Conclusions: Neither protection from grazing or massive afforestation alone are sufficient for conserving biodiversity in this system. A management model is suggested where the landscape should be maintained as a mosaic of four management types: complete protection from grazing, grazing rotation, planting sparse trees in eroded areas and revegetating degraded areas using native, herbaceous and grazing tolerant species.  相似文献   

12.
1. In the tropics, precipitation patterns result in seasonal fluctuations in the abundance and distribution of plant and animal species. Tropical predators and parasites are therefore faced with seasonal changes in prey and host availability. 2. This study investigates the seasonal interaction among a specialised ectoparasite, eavesdropping frog‐biting midges (Corethrella spp.), and their anuran hosts, examining how the abundance and diversity of the frog‐biting midge community fluctuate between the rainy (host abundant) and dry (host sparse) seasons. 3. Midges were captured in both the rainy and dry seasons using acoustic playbacks of calls from a common frog species that breeds during the rainy season, the túngara frog (Engystomops, Physalaemus, pustulosus). During the dry season túngara frog choruses are absent. To explore seasonal shifts in host preference or changes in the midge community due to host specificity, midges were also captured using playbacks of calls from a frog that breeds during the dry season, the pug‐nosed tree frog (Smilisca sila). 4. While the overall abundance of midges decreased in the dry season, only slight differences in the relative abundance between midge species were found. These results suggest that midge populations can shift between hosts as they become available across seasons, allowing adult populations of frog‐biting midges to persist year‐round. To overcome the challenge of detecting and localising different host species, it is proposed that frog‐biting midges have evolved a generalised acoustic template, allowing them to respond to a broad range of available hosts, regardless of seasonal host composition.  相似文献   

13.
Natural grasslands in southern Australia commonly exist in altered states. One widespread altered state is grassland pasture dominated by cool‐season (C3) native grasses maintained by ongoing grazing. This study explores the consequences of removing grazing and introducing fire as a conservation management tool for such a site. We examined the abundance of two native and three exotic species, across a mosaic of fire regimes that occurred over a three‐year period: unburnt, summer wild‐fire (>2 years previous), autumn management fire (<1 year previously) and burnt in both fires. Given that one aim of conservation management is to increase native species at the expense of exotics, the impacts of the fires were largely positive. Native grasses were at higher cover levels in the fire‐managed vegetation than in the unburnt vegetation. Of the three exotic species, one was consistently at lower density in the burnt plots compared to the unburnt plots, while the others were lower only in those plots burnt in summer. The results show that the response of a species varies significantly between different fire events, and that the effects of one fire can persist through subsequent fires. Importantly, some of the effects were large, with changes in the density of plants of over 100‐fold. Fire is potentially a cost‐effective tool to assist the ecological restoration of retired grassland pastures at large scales.  相似文献   

14.
Questions: Does grazing have the same effect on plant species richness at different spatial scales? Does the effect of spatial scale vary under different climatic conditions and vegetation types? Does the slope of the species‐area curve change with grazing intensity similarly under different climatic conditions and vegetation types? Location: Pastures along a climatic gradient in northeastern Spain. Methods: In zones under different regimes of sheep grazing (high‐, low‐pressure, abandonment), plant species richness was measured in different plot sizes (from 0.01 to 100 m2) and the slope of the species‐area curves was calculated. The study was replicated in five different locations along a climatic gradient from lowland semi‐arid rangelands to upland moist grasslands. Results: Species richness tended to increase with grazing intensity at all spatial scales in the moist upland locations. On the contrary, in the most arid locations, richness tended to decrease, or remain unchanged, with grazing due to increased bare soil. Grazing differentially affected the slope (z) of the species‐area curve (power function S=c Az) in different climatic conditions: z tended to increase with grazing in arid areas and decrease in moist‐upland ones. ß‐diversity followed similar pattern as z. Conclusions: Results confirm that the impact of grazing on plant species richness are spatial‐scale dependent. However, the effects on the species‐area relationship vary under different climatic conditions. This offers a novel insight on the patterns behind the different effects of grazing on diversity in moist vs. arid conditions reported in the literature. It is argued that the effect of spatial scale varies because of the different interaction between grazing and the intrinsic spatial structure of the vegetation. Variations in species‐area curves with grazing along moisture gradients suggest also a different balance of spatial components of diversity (i.e. a‐ and ß‐diversity).  相似文献   

15.
The abundance and composition of seed rain was measured over 14 months (February 2004 to March 2005) in Currawinya National Park, western Queensland. The experimental design included four measurement periods, three vegetation communities and two grazing regimes. A total of 12 586 seeds from 104 species were captured. There were significantly more seeds and species captured during the measurement period with the least rainfall, although no significant correlation was found between the amount of rainfall and the number of seeds or species captured. More seeds and species were captured where native and feral grazing pressure was removed, but this was only significant for the number of species. The above‐ground vegetation showed no significant difference between grazing treatments over the study period and exhibited far fewer species than the seed rain. However, the majority of species found in the above‐ground vegetation were represented in the seed rain. Hypotheses are explored as an attempt to understand the apparent lack of a relationship between seed rain and rainfall. The effects of grazing and seed movement and storage are also discussed.  相似文献   

16.
Different management regimes imposed on similar habitat types provide opportunities to investigate mechanisms driving community assembly and changes in species composition. We investigated the effect of pasture management on vegetation composition in wetlands with varying spatial isolation on a Florida cattle ranch. We hypothesized that increased pasture management intensity would dampen the expected negative effect of wetland isolation on native species richness due to a change from dispersal‐driven community assembly to niche‐driven assembly by accentuated environmental tolerance. We used native plant richness, exotic plant richness and mean coefficient of conservatism (CC) to assess wetland plant assemblage composition. Sixty wetlands were sampled, stratified by three levels of isolation across two pasture management intensities; semi‐native (less intensely managed; mostly native grasses, never fertilized) and agronomically improved (intensely managed, planted with exotic grasses, and fertilized). Improved pasture wetlands had lower native richness and CC scores, and greater total soil phosphorus and exotic species coverage compared to semi‐native pasture wetlands. Increased wetland isolation was significantly associated with decreases in native species richness in semi‐native pasture wetlands but not in improved pasture wetlands. Additionally, the species–area relationship was stronger in wetlands in improved pastures than semi‐native pastures. Our results indicate that a) native species switch from dispersal‐based community assembly in semi‐native pastures to a species‐sorting process in improved pastures, and b) recently‐introduced exotic species already sorted for more intensive management conditions are primarily undergoing dispersal‐based community assembly. That land‐use may alter the relative importance of assembly processes and that different processes drive native and exotic richness has implications for both ecosystem management and restoration planning.  相似文献   

17.
To assess the potential for enhancing an existing stand of native perennial grasses on a California Coast Range Grassland site, we experimentally manipulated the seasonal timing and presence of grazing for 3 years (1994 through 1996) and of autumn burning for 2 years (1994 and 1995) and measured species cover for 6 years (1993 through 1998). We subjected the species matrix to classification (TWINSPAN) and ordination (CCA) and tested the ordination site scores as well as diversity indices with linear mixed effects models. Four distinct plant community groups emerged from the classification. Two of these were dominated by annual grasses and two by perennial grasses. No treatment effects were observed on diversity. For composition, temporal and spatial random effects were important mixed effects model parameters, as was the fixed effect covariate, pre‐treatment CCA site score, indicating the importance of random environmental variation and initial starting conditions. Incorporation of these random effects and initial condition terms made for more powerful tests of the fixed effects, grazing season, and burning. We found no significant burning effects. Grazing removal imparted a shift in plant community from more annual‐dominated toward more perennial‐dominated vegetation. Individual perennial grass species responded differently according to genus and species. Nassella spp. increased gradually over time regardless of grazing treatment. Nassella pulchra (purple needlegrass) increase was greatest under spring grazing and N. lepida (foothill needlegrass) was greatest with grazing removal. Danthonia californica (California oatgrass) had little response over time under seasonal grazing treatments, but increased with grazing removal. Under relatively mesic weather conditions it appears that grazing removal from Coast Range Grasslands with existing native perennial grass populations can increase their cover. However if N. pulchra is the sole existing population, spring season‐restricted grazing should be equally effective at enhancing cover of the native grass species.  相似文献   

18.
Summary Since the mid 1990s, there has been a significant increase in the area of semi‐arid grasslands included in the National Reserve Systems in the Victorian Riverine Plain. This expansion has not been matched by an improved understanding of the alternate disturbance regimes that might produce better outcomes for native ecosystem conservation. Over the past 150 years, stock grazing has completely replaced fire in these grasslands. As a result, the impact of fire on native (and exotic) plant biodiversity is little understood. This study compared the current grazing regime (i.e. ‘status quo’) with burning and the removal of grazing (‘deferred’ management) across three grasslands in the Victorian Riverine Plain to determine the effects of short‐term exposure to alternate disturbances on community structure. Our results showed little change in species density, composition or abundance under the three disturbance treatments. A long exposure to stock grazing may have reduced the abundance of species likely to respond positively to burning. The cover of the biological soil crust responded positively to fire; such changes are known to significantly influence establishment and the functional composition of communities. As such, further investigation of the functional attributes of these communities may broaden our understanding of short‐term responses to alternate disturbance events. To better understand the utility of fire as a management tool, a long‐term commitment to expanding the implementation of this regime from its current extent will greatly increase the understanding of alternate disturbances in this landscape.  相似文献   

19.
Patch‐size distribution and plant cover are strongly associated to arid ecosystem functioning and may be a warning signal for the onset of desertification under changes in disturbance regimes. However, the interaction between regional productivity level and human‐induced disturbance regime as drivers for vegetation structure and dynamics remain poorly studied. We studied grazing disturbance effects on plant cover and patchiness in three plant communities located along a regional productivity gradient in Patagonia (Argentina): a semi‐desert (low‐productivity community), a shrub‐grass steppe (intermediate‐productivity community) and a grass steppe (high‐productivity community). We sampled paddocks with different sheep grazing pressure (continuous disturbance gradients) in all three communities. In each paddock, the presence or absence of perennial vegetation was recorded every 10 cm along a 50 m transect. Grazing effects on vegetation structure depended on the community and its association to the regional productivity. Grazing decreased total plant cover while increasing both the frequency of small patches and the inter‐patch distance in all communities. However, the size of these effects was the greatest in the high‐productivity community. Dominant species responses to grazing explained vegetation patch‐ and inter‐patch‐size distribution patterns. As productivity decreases, dominant species showed a higher degree of grazing resistance, probably because traits of species adapted to high aridity allow them to resist herbivore disturbance. In conclusion, our findings suggest that regional productivity mediates grazing disturbance impacts on vegetation mosaic. The changes within the same range of grazing pressure have higher effects on communities found in environments with higher productivity, markedly promoting their desertification. Understanding the complex interactions between environmental aridity and human‐induced disturbances is a key aspect for maintaining patchiness structure and dynamics, which has important implications for drylands management.  相似文献   

20.
Question: How is tundra vegetation related to climatic, soil chemical, geological variables and grazing across a very large section of the Eurasian arctic area? We were particularly interested in broad‐scale vegetation‐environment relationships and how well do the patterns conform to climate‐vegetation schemes. Material and Methods: We sampled vegetation in 1132 plots from 16 sites from different parts of the Eurasian tundra. Clustering and ordination techniques were used for analysing compositional patterns. Vegetation‐environment relationships were analysed by fitting of environmental vectors and smooth surfaces onto non‐metric multidimensional scaling scattergrams. Results: Dominant vegetation differentiation was associated with a complex set of environmental variables. A general trend differentiated cold and continental areas from relatively warm and weakly continental areas, and several soil chemical and physical variables were associated with this broad‐scaled differentiation. Especially soil chemical variables related to soil acidity (pH, Ca) showed linear relationships with the dominant vegetation gradient. This was closely related to increasing cryoperturbation, decreasing precipitation and cooler conditions. Remarkable differences among relatively adjacent sites suggest that local factors such as geological properties and lemming grazing may strongly drive vegetation differentiation. Conclusions: Vegetation differentiation in tundra areas conforms to a major ecocline underlain by a complex set of environmental gradients, where precipitation, thermal conditions and soil chemical and physical processes are coupled. However, local factors such as bedrock conditions and lemming grazing may cause marked deviations from the general climate‐vegetation models. Overall, soil chemical factors (pH, Ca) turned out to have linear relationship with the broad‐scale differentiation of arctic vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号