首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
Recent work on species with simple leaves suggests that the juxtaposition of abaxial (lower) and adaxial (upper) cell fates (dorsiventrality) in leaf primordia is necessary for lamina outgrowth. However, how leaf dorsiventral symmetry affects leaflet formation in species with compound leaves is largely unknown. In four non-allelic dorsiventrality-defective mutants in tomato, wiry, wiry3, wiry4 and wiry6, partial or complete loss of ab-adaxiality was observed in leaves as well as in lateral organs in the flower, and the number of leaflets in leaves was reduced significantly. Morphological analyses and expression patterns of molecular markers for ab-adaxiality [LePHANTASTICA (LePHAN) and LeYABBY B (LeYAB B)] indicated that ab-adaxial cell fates were altered in mutant leaves. Reduction in expression of both LeT6 (a tomato KNOX gene) and LePHAN during post-primordial leaf development was correlated with a reduction in leaflet formation in the wiry mutants. LePHAN expression in LeT6 overexpression mutants suggests that LeT6 is a negative regulator of LePHAN. KNOX expression is known to be correlated with leaflet formation and we show that LeT6 requires LePHAN activity to form leaflets. These phenotypes and gene expression patterns suggest that the abaxial and adaxial domains of leaf primordia are important for leaflet primordia formation, and thus also important for compound leaf development. Furthermore, the regulatory relationship between LePHAN and KNOX genes is different from that proposed for simple-leafed species. We propose that this change in the regulatory relationship between KNOX genes and LePHAN plays a role in compound leaf development and is an important feature that distinguishes simple leaves from compound leaves.  相似文献   

7.
Establishment of polarity in lateral organs of plants   总被引:2,自引:0,他引:2  
BACKGROUND: Asymmetric development of plant lateral organs initiates by partitioning of organ primordia into distinct domains along their adaxial/abaxial axis. A recent model proposes that a meristem-born signal, acting in a concentration-dependent manner, differentially activates PHABULOSA-like genes, which in turn suppress abaxial-promoting factors. As yet, no abaxial factors have been identified that when compromised give rise to adaxialized organs. RESULTS: Single mutants in either of the closely related genes KANADI1 (KAN1) or KANADI2 (KAN2) have little or no effect on plant morphology. However, in kan1 kan2 double mutant plants, there is a replacement of abaxial cell types by adaxial ones in most lateral organs. The alterations in polarity establishment are associated with expansion in the expression domain of the PHB-like genes and reduction in the expression of the previously described abaxial-promoting YABBY genes. Ectopic expression of either of the KANADI genes throughout leaf primordia results in dramatic transformation of adaxial cell types into abaxial ones, failure of lateral blade expansion, and vascular tissue formation. CONCLUSION: The phenotypes of KANADI loss- and gain-of-function alleles suggest that fine regulation of these genes is at the core of polarity establishment. As such, they are likely to be targets of the PHB-mediated meristem-born signaling that patterns lateral organ primordia. PHB-like genes and the abaxial-promoting KANADI and YABBY genes appear to be expressed throughout primordia anlagen before becoming confined to their corresponding domains as primordia arise. This suggests that the establishment of polarity in plant lateral organs occurs via mutual repression interactions between ab/ad factors after primordium emergence, consistent with the results of classical dissection experiments.  相似文献   

8.
9.
Although anthocyanin coloration in lower (abaxial) leaf cells has been documented for numerous species, the functional significance of this character has not been comprehensively investigated according to habitat or leaf orientation. Here, we demonstrate that abaxial anthocyanin may function as a photoprotectant, similarly to its purported role in upper (adaxial) cells, in leaves vulnerable to high irradiance incident on abaxial surfaces. Spectral scans were derived for Galax urceolata leaves with the following phenotypes: abaxial or adaxial anthocyanin only, abaxial and adaxial anthocyanin, and no anthocyanin. To determine whether anthocyanins conferred protection from photoinhibition, maximum photosystem II efficiencies of red (anthocyanic) and green (acyanic) surfaces were compared during and after exposure to photoinhibitory conditions. Leaves were either positioned with their adaxial surfaces facing the light source or inverted to expose abaxial surfaces. Spectral scans showed increased absorptance of 500-600 nm wavelengths by red surfaces (consistent with the absorbance spectrum of anthocyanin), regardless of whether that surface was abaxial or adaxial. Leaves with anthocyanin in either illuminated surface were also photoinhibited less than leaves lacking anthocyanin in that surface. These results suggest that anthocyanic layers reduce absorbed sunlight in the mesophyll not only for adaxial surfaces, but also for the abaxial. Adaxial/abaxial anthocyanin plasticity may therefore be adaptive in high-light environments or during light-sensitive developmental stages where leaf orientation and/or substrate albedo are variable.  相似文献   

10.
Plant lateral organs, such as leaves, have three primary axes of growth–proximal‐distal, medial‐‐lateral and adaxial‐abaxial (dorsal‐ventral). Although most leaves are planar, modified leaf forms, such as the bikeeled grass prophyll, can be found in nature. A detailed examination of normal prophyll development indicates that polarity is established differently in the keels than in other parts of the prophyll. Analysis of the maize HD‐ZIPIII gene rolled leaf1 (rld1) suggests that altered expression patterns are responsible for keel outgrowth. Recessive mutations in the maize (Zea mays) KANADI (KAN) gene milkweed pod1 (mwp1), which promotes abaxial cell identity, strongly affect development of the prophyll and silks (fused carpels). The prophyll is reduced to two unfused midribs and the silks are narrow and misshapen. Our data indicate that the prophyll and other fused organs are particularly sensitive to disruptions in adaxial‐abaxial polarity. In addition, lateral and proximal‐distal growth of most lateral organs is reduced in the mwp1‐R mutant, supporting a role for the adaxial‐abaxial boundary in promoting growth along both axes. We propose that the adaxial‐abaxial patterning mechanism has been co‐opted during evolution to generate diverse organ morphologies. genesis 48:416–423, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Thuja plicata and Platycladus orientalis initially produce only bifacial needle leaves. When the first lateral shoots develop, the leaf morphology and anatomy changes dramatically. Subsequently, only greatly reduced, bifacial scale leaves are developed. A new kind of “superimposed bifaciality” occurs with the change from juvenile needle leaves to mature scale leaves. Anatomical dorsiventrality affects not only the individual leaf, but also the complete plagiotropic lateral shoots of Thuja, which have a sun- and shade-exposed side. The upper light-exposed median leaves show adaxial leaf anatomy, contrary to the lower shaded median leaves showing abaxial leaf anatomy. Due to their mixed exposure, the lateral leaves show a lateral differentiation. At vertical lateral shoots of Platycladus, a predominant light-exposed side is absent. Thus, the anatomical dorsiventrality does not affect the complete shoot. Here the morphological abaxial side of a scale leaf becomes functionally and physiologically adaxial by reorientation of the palisade parenchyma and stomata. In juvenile needle leaves, the palisade parenchyma is located adaxial, with the majority of stomata being located abaxial. Conversely, in mature scale leaves, the palisade parenchyma is abaxial and the majority of stomata are adaxial.  相似文献   

12.
The protein kinase C (PKC) pathway is involved in the maintenance of cell shape and cell integrity in Saccharomyces cerevisiae. Here, we show that this pathway mediates tolerance to low pH and that the Bck1 and Slt2 proteins belonging to the mitogen-activated protein kinase cascade are essential for cell survival at low pH. The PKC pathway is activated during acidification of the extracellular environment, and this activation depends mainly on the Mid2p cell wall sensor. Rgd1p, which encodes a Rho GTPase-activating protein for the small G proteins Rho3p and Rho4p, also plays a role in low-pH response. The rgd1Delta strain is sensitive to low pH, and Rgd1p activates the PKC pathway in an acidic environment. Inactivation of both genes in the double mutant rgd1Delta mid2Delta strain renders yeast cells unable to survive at low pH as in bck1Delta and slt2Delta strains. Our data provide evidence for the existence of two distinct ways, one involving Mid2p and the other involving Rgd1p, with both converging to the cell integrity pathway to mediate low-pH tolerance in Saccharomyces cerevisiae. Nevertheless, even if Rgd1p acts on the PKC pathway, it seems that its mediating action on low-pH tolerance is not limited to this pathway. As the Mid2p amount plays a role in rgd1Delta sensitivity to low pH, Mid2p seems to act more like a molecular rheostat, controlling the level of PKC pathway activity and thus allowing phenotypical expression of RGD1 inactivation.  相似文献   

13.
The leaf primordium derives from the peripheral zone of shoot apical meristem. During the formation of leaf primordia, they need to establish the proximodistal, mediolateral, and ab/adaxial axes. Among these axes, the ab/adaxial axis might be the most important. ASYMMETRIC LEAVES2 (AS2) gene is a member of AS2/LATERAL ORGAN BOUNDARY (LOB) family of Arabidopsis thaliana. In this work, we transformed 35S:AS2 transgene constructs to cockscomb (Celosia cristata) via Agrobacterium tumefaciens. All primary transformants subsequently obtained were placed into phenotypic categories and self-pollinated. As a whole, a total of 44 T1 35S:AS2 cockscomb plants obtained were grouped into two major categories: (I) slightly wrinkled leaves (28/44), (II) extremely curved leaves (16/44), on the basis of their leaf phenotypes. Furthermore, we characterized the anatomical features of these malformed leaves; and found the transformation of adaxial cell types into abaxial cell ones. A series of data suggest that AS2 might be involved in the determination of abaxial polarity in cockscomb plants. However, a few research teams have reported that AS2 might be involved in the determination of adaxial polarity in leaf primodia of Arabidopsis thaliana. These data above indicate that the roles of the same ab/adaxial determinant might differ between distinct species. At last, the different function of AS2 in distinct species was discussed.  相似文献   

14.
15.
Leaf adaxial–abaxial polarity refers to the two leaf faces, which have different types of cells performing distinct biological functions. In 1951, Ian Sussex reported that when an incipient leaf primordium was surgically isolated by an incision across the vegetative shoot apical meristem (SAM), a radialized structure without an adaxial domain would form. This led to the proposal that a signal, now called the Sussex signal, is transported from the SAM to emerging primordia to direct leaf adaxial–abaxial patterning. It was recently proposed that instead of the Sussex signal, polar transport of the plant hormone auxin is critical in leaf polarity formation. However, how auxin polar transport functions in the process is unknown. Through live imaging, we established a profile of auxin polar transport in and around young leaf primordia. Here we show that auxin polar transport in lateral regions of an incipient primordium forms auxin convergence points. We demonstrated that blocking auxin polar transport in the lateral regions of the incipient primordium by incisions abolished the auxin convergence points and caused abaxialized leaves to form. The lateral incisions also blocked the formation of leaf middle domain and margins and disrupted expression of the middle domain/margin‐associated marker gene WUSCHEL‐RELATED HOMEOBOX 1 (SlWOX1). Based on these results we propose that the auxin convergence points are required for the formation of leaf middle domain and margins, and the functional middle domain and margins ensure leaf adaxial–abaxial polarity. How middle domain and margins function in the process is discussed.  相似文献   

16.
Maize leaves are initiated from the shoot apex with an inherent leaf dorsoventral polarity; the leaf surface closest to the meristem is the adaxial (upper, dorsal) surface whereas the opposite leaf surface is the abaxial (lower, ventral) surface. The Rolled leaf1 (Rld1) semi-dominant maize mutations affect dorsoventral patterning by causing adaxialization of abaxial leaf regions. This adaxialization is sometimes associated with abaxialization of the adaxial leaf regions, which constitutes a "switch". Dosage analysis indicates Rld1 mutants are antimorphs. We mapped Rld1's action to a single cell layer using a mosaic analysis and show Rld1 acts non cell-autonomously along the dorsoventral axis. The presence of Rld1 mutant product in the abaxial epidermis is necessary and sufficient to induce the Rolled leaf1 phenotype within the lower epidermis as well as in other leaf layers along the dorsoventral axis. These results support a model for the involvement of wild-type RLD1 in the maintenance of dorsoventral features of the leaf. In addition, they demonstrate the abaxial epidermis sends/receives a cell fate determining signal to/from the adaxial epidermis and controls the dorsoventral patterning of the maize leaf.  相似文献   

17.
18.
Initiation of floral primordia begins in Agalinis densiflora with production of two lateral adaxial calyx lobe primordia followed by a midadaxial primordium, and then primordia of two abaxial calyx lobes. Initiation of three abaxial corolla lobe primordia is succeeded by that of two stamen pairs and then by primordia of two adaxial corolla lobes. The primordium of the abaxial carpel appears before the adaxial one. Except for the calyx, initiation of primordia proceeds unidirectionally from the abaxial to the adaxial side of the floral apex. Zygomorphy in the calyx, corolla, and androecium is evident during initiation of primordia and is accentuated during organogenesis. The calyx undergoes comparatively rapid organogenesis, but the inner three floral series undergo a protracted period of organogenesis. The perianth series reach maturation prior to meiosis in the anthers. Maturation of the androecium and gynoecium are postmeiotic events.  相似文献   

19.
McHale NA  Koning RE 《The Plant cell》2004,16(5):1251-1262
Initiation and growth of leaf blades is oriented by an adaxial/abaxial axis aligned with the original axis of polarity in the leaf primordium. To investigate mechanisms regulating this process, we cloned the Nicotiana tabacum ortholog of PHANTASTICA (NTPHAN) and generated a series of antisense transgenics in N. sylvestris. We show that NSPHAN is expressed throughout emerging blade primordia in the wild type and becomes localized to the middle mesophyll in the expanding lamina. Antisense NSPHAN leaves show ectopic expression of NTH20, a class I KNOX gene. Juvenile transgenic leaves have normal adaxial/abaxial polarity and generate leaf blades in the normal position, but the adaxial mesophyll shows disorganized patterns of cell division, delayed maturation of palisade, and ectopic reinitiation of blade primordia along the midrib. Reversal of the phenotype with exogenous gibberellic acid suggests that NSPHAN, acting via KNOX repression, maintains determinacy in the expanding lamina and sustains the patterns of cell proliferation critical to palisade development.  相似文献   

20.
Huang W  Pi L  Liang W  Xu B  Wang H  Cai R  Huang H 《The Plant cell》2006,18(10):2479-2492
Polarity formation is central to leaf morphogenesis, and several key genes that function in adaxial-abaxial polarity establishment have been identified and characterized extensively. We previously reported that Arabidopsis thaliana ASYMMERTIC LEAVES1 (AS1) and AS2 are important in promoting leaf adaxial fates. We obtained an as2 enhancer mutant, asymmetric leaves enhancer3 (ae3), which demonstrated pleiotropic plant phenotypes, including a defective adaxial identity in some leaves. The ae3 as2 double mutant displayed severely abaxialized leaves, which were accompanied by elevated levels of leaf abaxial promoting genes FILAMENTOUS FLOWER, YABBY3, KANADI1 (KAN1), and KAN2 and a reduced level of the adaxial promoting gene REVOLUTA. We identified AE3, which encodes a putative 26S proteasome subunit RPN8a. Furthermore, double mutant combinations of as2 with other 26S subunit mutations, including rpt2a, rpt4a, rpt5a, rpn1a, rpn9a, pad1, and pbe1, all displayed comparable phenotypes with those of ae3 as2, albeit with varying phenotypic severity. Since these mutated genes encode subunits that are located in different parts of the 26S proteasome, it is possible that the proteolytic function of the 26S holoenzyme is involved in leaf polarity formation. Together, our findings reveal that posttranslational regulation is essential in proper leaf patterning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号