首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
AIMS: To develop a multiplex PCR assay for the detection of Salmonella enterica serovar Enteritidis in human faeces. METHODS AND RESULTS: A total of 54 Salmonella strains representing 19 serovars and non-Salmonella strains representing 11 different genera were used. Five primer pairs were employed in the assay. Three of them targeted to the genes hilA, spvA and invA that encode virulence-associated factors. A fourth primer pair amplified a fragment of a unique sequence within S. enterica serovar Enteritidis genomes. An internal amplification control (a fragment of a conservative sequence within the 16S rRNA genes) was targeted by a fifth primer pair. The assay produced two or three amplicons from the invA, hilA and 16S rRNA genes for 19 Salmonella serovars. All Salmonella and non-Salmonella strains yielded a band of an internal amplification control. For S. enterica serovar Typhimurium, four products (the fourth from the spvA gene), and for S. enterica serovar Enteritidis five amplicons (the fifth from the sdf gene) were observed. S. enterica serovar Enteritidis was cultured from three of 71 rectal swabs from diarrhoeal patients. Five specific amplicons were generated with the multiplex PCR assay only from culture-positive faecal samples. CONCLUSION: The multiplex PCR assay specifically detects S. enterica serovar Enteritidis. SIGNIFICANCE AND IMPACT OF THE STUDY: This is a novel multiplex PCR assay, which contains an internal amplification control and enables concurrent survey for Salmonella virulence genes.  相似文献   

2.
As part of a major international project for the validation and standardization of PCR for detection of five major food-borne pathogens, four primer sets specific for Salmonella species were evaluated in-house for their analytical accuracy (selectivity and detection limit) in identifying 43 Salmonella spp. and 47 non-Salmonella strains. The most selective primer set was found to be 139-141 (K. Rahn, S. A. De Grandis, R. C. Clarke, S. A. McEwen, J. E. Galán, C. Ginocchio, R. Curtiss III, and C. L. Gyles, Mol. Cell. Probes 6:271-279, 1992), which targets the invA gene. An extended determination of selectivity by using 364 strains showed that the inclusivity was 99.6% and the exclusivity was 100% for the invA primer set. To indicate possible PCR inhibitors derived from the sample DNA, an internal amplification control (IAC), which was coamplified with the invA target gene, was constructed. In the presence of 300 DNA copies of the IAC, the detection probability for primer set 139-141 was found to be 100% when a cell suspension containing 10(4) CFU/ml was used as the template in the PCR (50 CFU per reaction). The primer set was further validated in an international collaborative study that included 16 participating laboratories. Analysis with 28 coded ("blind") DNA samples revealed an analytical accuracy of 98%. Thus, a simple PCR assay that is specific for Salmonella spp. and amplifies a chromosomal DNA fragment detected by gel electrophoresis was established through extensive validation and is proposed as an international standard. This study addresses the increasing demand of quality assurance laboratories for standard diagnostic methods and presents findings that can facilitate the international comparison and exchange of epidemiological data.  相似文献   

3.
Aim:  To develop a novel multiplex polymerase chain reaction (PCR) assay with six primer pairs for Salmonella subspecies identification.
Methods and Results:  Five primer pairs were chosen to detect the genes ( fljB , mdcA , gatD , stn and STM4057) responsible for several phenotypic traits or encoding (sub) species-specific regions. A primer pair for invA was added to simultaneously detect Salmonella . The combination of these primer pairs was expected to give unique results to all subspecies, including Salmonella bongori. The multiplex PCR assay was optimized and evaluated with 53 Salmonella strains representing all S. enterica subspecies, S. bongori and five non- Salmonella strains. The multiplex PCR assay revealed that the genotypes were well correlated with the phenotypes in the Salmonella strains tested. The unique band patterns to their subspecies were generated from 94·3% (50/53) of the Salmonella strains, and no product from other strains by the multiplex PCR assay.
Conclusions:  The multiplex PCR assay we developed was found to be a rapid, specific and easy to perform method compared with traditional biochemical tests for Salmonella subspecies identification, especially for rapid screening of large numbers of samples.
Significance and Impact of the Study:  The assay will be useful for characterizing Salmonella isolates from reptiles, which belong to various subspecies, and therefore add to the scientific understanding of reptile-associated Salmonellosis.  相似文献   

4.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria.  相似文献   

5.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria.  相似文献   

6.
Review and re-analysis of domain-specific 16S primers   总被引:33,自引:0,他引:33  
The Polymerase Chain Reaction (PCR) has facilitated the detection of unculturable microorganisms in virtually any environmental source and has thus been used extensively in the assessment of environmental microbial diversity. This technique relies on the assumption that the gene sequences present in the environment are complementary to the "universal" primers used in their amplification. The recent discovery of new taxa with 16S rDNA sequences not complementary to standard universal primers suggests that current 16S rDNA libraries are not representative of true prokaryotic biodiversity. Here we re-assess the specificity of commonly used 16S rRNA gene primers and present these data in tabular form designed as a tool to aid simple analysis, selection and implementation. In addition, we present two new primer pairs specifically designed for effective "universal" Archaeal 16S rDNA sequence amplification. These primers are found to amplify sequences from Crenarchaeote and Euryarchaeote type strains and environmental DNA.  相似文献   

7.
A robust duplex 5' nuclease (TaqMan) real-time PCR was developed and in-house validated for the specific detection of Salmonella enterica subspecies enterica serovar Enteritidis in whole chicken carcass rinses and consumption eggs. The assay uses specifically designed primers and a TaqMan probe to target the Prot6e gene located on the S. Enteritidis specific 60-kb virulence plasmid. As an internal amplification control to monitor Salmonella DNA in the sample, a second primer/TaqMan probe set detects simultaneously the Salmonella specific invA gene. The assay identified correctly 95% of the 79 Salmonella Enteritidis strains tested comprising 19 different phage types. None of the 119 non-Enteritidis strains comprising 54 serovars was positive for the Prot6e gene. The assay detection probability was for 10(2) or more genome equivalents 100% and for 10 equivalents 83%. A pre-PCR sample preparation protocol including a pre-enrichment step in buffered peptone water, followed by DNA extraction was applied on low levels of artificially contaminated whole chicken carcass rinses and eggs from hens as well as 25 potentially naturally contaminated chickens. The detection limit was less than three CFU per 50 ml carcass rinse or 10 ml egg. The sensitivity and specificity compared to the traditional culture-based detection method and serotyping were both 100%. Twenty-five potentially naturally contaminated chickens were compared by the real-time PCR and the traditional cultural isolation method resulting in four Salmonella positive samples of which two were positive for the Prot6e gene and serotyped as S. Enteritidis. We show also that Salmonella isolates which have a rough lipopolysaccharide structure could be assigned to the serovar Enteritidis by the real-time PCR. This methodology can contribute to meet the need of fast identification and detection methods for use in monitoring and control measures programmes.  相似文献   

8.
We sequenced about 930 bp of the dnaJ gene from 15 Legionella pneumophila serogroups and some other members of the genus Legionella. As L. pneumophila 16S rDNA sequences could not discriminate between all subspecies and serogroups, we assessed the use of dnaJ gene sequences to differentiate between Legionella subspecies as well as between L. pneumophila serogroups. A phylogenetic analysis revealed that dnaJ gene sequences were more variable between the L. pneumophila serogroups than mip gene and 16S rDNA sequences. By studying 61 strains from 41 species of the genus Legionella, as well as other genera, we established a PCR method that could amplify 285 bp of dnaJ gene from all L. pneumophila serogroups. This primer set was more sensitive than mip gene primers and was able to detect 0.25 ng of purified DNA. We also describe the 16S rDNA primers that were used to detect most Legionella genus members.  相似文献   

9.
PCR assays were formatted using primer pairs homologous to phoE and invA genes. The amplification conditions were optimized with pure cultures and reactions were carried out to define selectivity, specificity and sensitivity of both primer pairs. The performance of the invA primer pair was better than that of the phoE pair, making the specific detection of Salmonella serovars and strains isolated from different food samples possible. Using the invA primer pair, the combined selective enrichment method with the polymerase chain reaction assay was established and used to detect Salmonella from artificially multi-contaminated food samples. The complete procedure detected as few as three cells of Salmonella (3 c.f.u.) from milk and meat samples.  相似文献   

10.
11.
The 16S rRNA gene is conserved across all bacteria and as such is routinely targeted in PCR surveys of bacterial diversity. PCR primer design aims to amplify as many different 16S rRNA gene sequences from as wide a range of organisms as possible, though there are no suitable 100% conserved regions of the gene, leading to bias. In the gastrointestinal tract, bifidobacteria are a key genus, but are often under-represented in 16S rRNA surveys of diversity. We have designed modified, 'bifidobacteria-optimised' universal primers, which we have demonstrated detection of bifidobacterial sequence present in DNA mixtures at 2% abundance, the lowest proportion tested. Optimisation did not compromise the detection of other organisms in infant faecal samples. Separate validation using fluorescence in situ hybridisation (FISH) shows that the proportions of bifidobacteria detected in faecal samples were in agreement with those obtained using 16S rRNA based pyrosequencing. For future studies looking at faecal microbiota, careful selection of primers will be key in order to ensure effective detection of bifidobacteria.  相似文献   

12.
Complete 23S and almost complete 16S rRNA gene sequences were determined for the type strains of the validly described Enterococcus species, Melissococcus pluton and Tetragenococcus halophilus. A comprehensive set of rRNA targeted specific oligonucleotide hybridization probes was designed according to the multiple probe concept. In silico probe design and evaluation was performed using the respective tools of the ARB program package in combination with the ARB databases comprising the currently available 16S as well as 23S rRNA primary structures. The probes were optimized with respect to their application for reverse hybridization in microplate format. The target comprising 16S and 23S rDNA was amplified and labeled by PCR (polymerase chain reaction) using general primers targeting a wide spectrum of bacteria. Alternatively, amplification of two adjacent rDNA fragments of enterococci was performed by using specific primers. In vitro evaluation of the probe set was done including all Enterococcus type strains, and a selection of other representatives of the gram-positive bacteria with a low genomic DNA G+C content. The optimized probe set was used to analyze enriched drinking water samples as well as original samples from waste water treatment plants.  相似文献   

13.
AIMS: Development of a PCR assay that can target multiple genes for rapid detection of Salmonella enterica serovar Typhi (S. Typhi) from water and food samples. METHODS AND RESULTS: PCR primers for invasion, O, H and Vi antigen genes, invA, prt, fliC-d and viaB were designed and used for the rapid detection of S. Typhi by multiplex PCR. Internal amplification control, which co-amplified with prt primers, was also included in the assay. The results showed that all cultures of Salmonella were accurately identified by the assay with no nonspecific amplification in other cultures. The assay had 100% detection probability when a cell suspension of 10(4) CFU ml(-1) (500 CFU per reaction) was used. Salmonella Typhi bacteria were artificially inoculated in the water and food (milk and meat rinse) samples and detected by mPCR after overnight pre-enrichment in buffered peptone water. No Salmonella bacteria could be detected from water samples collected from the field by mPCR or standard culture method. CONCLUSIONS: The developed mPCR assay provides specific detection of S. Typhi. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid methods for detection of S. Typhi from complex environmental matrices are almost nonexistent. The mPCR assay reported in this study can be useful to identify S. Typhi bacteria in field environmental samples.  相似文献   

14.
PCR primer sets were developed for the specific amplification and sequence analyses encoding the gyrase subunit B (gyrB) of members of the family Microbacteriaceae, class Actinobacteria. The family contains species highly related by 16S rRNA gene sequence analyses. In order to test if the gene sequence analysis of gyrB is appropriate to discriminate between closely related species, we evaluate the 16S rRNA gene phylogeny of its members. As the published universal primer set for gyrB failed to amplify the responding gene of the majority of the 80 type strains of the family, three new primer sets were identified that generated fragments with a composite sequence length of about 900 nt. However, the amplification of all three fragments was successful only in 25% of the 80 type strains. In this study, the substitution frequencies in genes encoding gyrase and 16S rDNA were compared for 10 strains of nine genera. The frequency of gyrB nucleotide substitution is significantly higher than that of the 16S rDNA, and no linear correlation exists between the similarities of both molecules among members of the Microbacteriaceae. The phylogenetic analyses using the gyrB sequences provide higher resolution than using 16S rDNA sequences and seem able to discriminate between closely related species.  相似文献   

15.
Abstract The species composition of ammonia-oxidizing bacteria in aquatic environments was investigated using PCR primers for 16S rRNA genes to amplify specific subsets of the total ammonia-oxidizer population. The specificity of the amplification reactions was determined using total genomic DNA from known nitrifying strains and non-nitrifying strains identified as having similar rDNA sequences. Specificity of amplification was determined both for direct amplification, using the nitrifier specific primers, and with nested amplification, in which the nitrifier primers were used to reamplify a fragment obtained from direct amplification with Eubacterial universal primers. The present level of specificity allows the distinction between Nitrosomonas europaea, Nitrosomonas sp. (marine) and the other known ammonia-oxidizers in the beta subclass of the Proteobacteria. Using total DNA extracted from natural samples, we used direct amplification to determine presence/absence of different species groups. Species composition was found to differ among depths in vertical profiles of lake samples and among samples and enrichments from various other aquatic environments. Nested PCR yielded several more positive reactions, which implies that nitrifier DNA was present in most samples, but often at very low levels. Received: 25 September 1995; Revised: 15 January 1996; Accepted: 20 February 1996  相似文献   

16.
基于反转录-环介导等温扩增技术检测沙门氏菌   总被引:1,自引:0,他引:1  
  相似文献   

17.
基因芯片技术检测3种食源性致病微生物方法的建立   总被引:5,自引:0,他引:5  
建立一种运用多重PCR和基因芯片技术检测和鉴定志贺氏菌、沙门氏菌、大肠杆菌O157的方法, 为3种食源性致病菌的快速检测和鉴定提供了准确、快速、灵敏的方法。分别选取编码志贺氏菌侵袭性质粒抗原H基因(ipaH)、沙门氏菌肠毒素(stn)基因和致泻性大肠杆菌O157志贺样毒素(slt)基因设计引物和探针, 进行三重PCR扩增, 产物与含特异性探针的芯片杂交。对7种细菌共26株菌进行芯片检测, 仅3种菌得到阳性扩增结果, 证明此方法具有很高的特异性。3种致病菌基因组DNA和细菌纯培养物的检测灵敏度约为8 pg。对模拟食品样品进行直接检测, 结果与常规细菌学培养结果一致, 检测限为50 CFU/mL。结果表明:所建立的基因芯片检测方法特异性好, 灵敏度高, 为食源性致病菌的检测提供了理想手段, 有良好的应用前景。  相似文献   

18.
BACKGROUND: The majority of filarial nematode species are host to Wolbachia bacterial endosymbionts, although a few including Acanthocheilonema viteae, Onchocerca flexuosa and Setaria equina have been shown to be free of infection. Comparisons of species with and without symbionts can provide important information on the role of Wolbachia symbiosis in the biology of the nematode hosts and the contribution of the bacteria to the development of disease. Previous studies by electron microscopy and PCR have failed to detect intracellular bacterial infection in Loa loa. Here we use molecular and immunohistological techniques to confirm this finding. METHODS: We have used a combination of PCR amplification of bacterial genes (16S ribosomal DNA [rDNA], ftsZ and Wolbachia surface protein [WSP]) on samples of L. loa adults, third-stage larvae (L3) and microfilariae (mf) and immunohistology on L. loa adults and mf derived from human volunteers to determine the presence or absence of Wolbachia endosymbionts. Samples used in the PCR analysis included 5 adult female worms, 4 adult male worms, 5 mf samples and 2 samples of L3. The quality and purity of nematode DNA was tested by PCR amplification of nematode 5S rDNA and with diagnostic primers from the target species and used to confirm the absence of contamination from Onchocerca sp., Mansonella perstans, M. streptocerca and Wuchereria bancrofti. Immunohistology was carried out by light and electron microscopy on L. loa adults and mf and sections were probed with rabbit antibodies raised to recombinant Brugia malayi Wolbachia WSP. Samples from nematodes known to be infected with Wolbachia (O. volvulus, O. ochengi, Litomosoides sigmodontis and B. malayi) were used as positive controls and A. viteae as a negative control. RESULTS: Single PCR analysis using primer sets for the bacterial genes 16S rDNA, ftsZ, and WSP were negative for all DNA samples from L. loa. Positive PCR reactions were obtained from DNA samples derived from species known to be infected with Wolbachia, which confirmed the suitability of the primers and PCR conditions. The quality and purity of nematode DNA samples was verified by PCR amplification of 5S rDNA and with nematode diagnostic primers. Additional analysis by 'long PCR' failed to produce any further evidence for Wolbachia symbiosis. Immunohistology of L. loa adults and mf confirmed the results of the PCR with no evidence for Wolbachia symbiosis. CONCLUSION: DNA analysis and immunohistology provided no evidence for Wolbachia symbiosis in L. loa.  相似文献   

19.
Real-time quantitative PCR assays were developed for the absolute quantification of different groups of bacteria in pure cultures and in environmental samples. 16S rRNA genes were used as markers for eubacteria, and genes for extracellular peptidases were used as markers for potentially proteolytic bacteria. For the designed 16S rDNA TaqMan assay, specificity of the designed primer-probe combination for eubacteria, a high amplification efficiency over a wide range of starting copy numbers and a high reproducibility is demonstrated. Cell concentrations of Bacillus cereus, B. subtilis and Pseudomonas fluorescens in liquid culture were monitored by TaqMan-PCR using the 16S rDNA target sequence of Escherichia coli as external standard for quantification. Results agree with plate counts and microscopic counts of DAPI stained cells. The significance of 16S rRNA operon multiplicity to the quantification of bacteria is discussed.Furthermore, three sets of primer pair together with probe previously designed for targeting different classes of bacterial extracellular peptidases were tested for their suitability for TaqMan-PCR based quantification of proteolytic bacteria. Since high degeneracy of the probes did not allow accurate quantification, SybrGreen was used instead of molecular probes to visualize and quantify PCR products during PCR. The correlation between fluorescence and starting copy number was of the same high quality as for the 16S rDNA TaqMan assay for all the three peptidase gene classes. The detected amount of genes for neutral metallopeptidase of B. cereus, for subtilisin of B. subtilis and for alkaline metallopeptidase of P. fluorescens corresponded exactly to the numbers of bacteria investigated by the 16S rDNA targeting assay.The developed assays were applied for the quantification of bacteria in soil samples.  相似文献   

20.
Aims:  The focus of this study was to identify a bacterial 16S rRNA gene sequence, unique to microbiota in the human gut, for use in development of a dependable PCR assay to detect human faecal pollution in water.
Methods and Results:  Suppression subtractive hybridization (SSH) and bioinformatics were used to identify a genetic marker, within the 16S rRNA gene of Faecalibacterium , for the detection of human faeces. DNA sequencing analysis demonstrated that a majority (16) of 74 clones of the SSH library contained insertion sequences identified as Faecalibacterium 16S rRNA genes . Human faeces-specific sequences were derived and six PCR primer sets designed and tested against faecal DNA samples from human and nonhuman sources. One PCR primer set, HFB-F3 and HFB-R5, was exclusively associated with human faeces. These primers generated a human faeces-specific amplicon of 399 bp from 60·2% of human faecal samples and 100% of sewage samples.
Conclusions:  The subject Faecalibacterium marker is specific for sewage.
Significance and Impact of the Study:  This study represents the initial report of a Faecalibacterium marker for human faeces, which may prove useful for microbial source tracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号