首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the analysis of microbial community structure based on 16S rDNA sequence diversity, sensitive and robust PCR amplification of 16S rDNA is a critical step. To obtain accurate microbial composition data, PCR amplification must be free of bias; however, amplifying all 16S rDNA species with equal efficiency from a sample containing a large variety of microorganisms remains challenging. Here, we designed a universal primer based on the V3-V4 hypervariable region of prokaryotic 16S rDNA for the simultaneous detection of Bacteria and Archaea in fecal samples from crossbred pigs (Landrace×Large white×Duroc) using an Illumina MiSeq next-generation sequencer. In-silico analysis showed that the newly designed universal prokaryotic primers matched approximately 98.0% of Bacteria and 94.6% of Archaea rRNA gene sequences in the Ribosomal Database Project database. For each sequencing reaction performed with the prokaryotic universal primer, an average of 69,330 (±20,482) reads were obtained, of which archaeal rRNA genes comprised approximately 1.2% to 3.2% of all prokaryotic reads. In addition, the detection frequency of Bacteria belonging to the phylum Verrucomicrobia, including members of the classes Verrucomicrobiae and Opitutae, was higher in the NGS analysis using the prokaryotic universal primer than that performed with the bacterial universal primer. Importantly, this new prokaryotic universal primer set had markedly lower bias than that of most previously designed universal primers. Our findings demonstrate that the prokaryotic universal primer set designed in the present study will permit the simultaneous detection of Bacteria and Archaea, and will therefore allow for a more comprehensive understanding of microbial community structures in environmental samples.  相似文献   

2.
Denaturing gradient gel electrophoresis of PCR-amplified 16S ribosomal DNA (rDNA) fragments has frequently been applied to the fingerprinting of natural bacterial populations (PCR/DGGE). In this study, sequences of bacterial universal primers frequently used in PCR/DGGE were compared with 16S rDNA sequences that represent recently proposed divisions in the domain Bacteria. We found mismatches in 16S rDNA sequences from some groups of bacteria. Inosine residues were then introduced into the bacterial universal primers to reduce amplification biases caused by these mismatches. Using the improved primers, phylotypes affiliated with Verrucomicrobia and candidate division OP11, were detected in DGGE fingerprints of groundwater populations, which have not been detected by PCR/DGGE with conventional universal primers.  相似文献   

3.
PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences   总被引:1,自引:0,他引:1  

Background

Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity.

Methodology/Principal Findings

Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes.

Conclusions/Significance

The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets for metazoan metagenetic analyses, are discussed.  相似文献   

4.
Methane-oxidising microbial communities are studied intensively because of their importance for global methane cycling. A suite of molecular microbial techniques has been applied to the study of these communities. Denaturing gradient gel electrophoresis (DGGE) is a diversity screening tool combining high sample throughput with phylogenetic information of high resolution. The existing 16S rRNA-based DGGE assays available for methane-oxidising bacteria suffer from low-specificity, low phylogentic information due to the length of the amplified fragments and/or from lack of resolving power. In the present study we developed new combinations of existing primers and applied these on methane-oxidising microbial communities in a freshwater wetland marsh. The designed strategies comprised nested as well as direct amplification of environmental DNA. Successful application of direct amplification using combinations of universal and specific primers circumvents the nested designs currently used. All developed assays resulted in identical community profiles in wetland soil cores with Methylobacter sp. and Methylocystis sp.-related sequences. Changes in the occurrence of Methylobacter-related sequences with depth in the soil profile may be related to the decrease in methane-oxidizing activity.  相似文献   

5.
Nitrate reduction is performed by phylogenetically diverse bacteria. Analysis of narG (alpha subunit of the membrane bound nitrate reductase) trees constructed using environmental sequences revealed a new cluster that is not related to narG gene from known nitrate-reducing bacteria. In this study, primers targeting this as yet uncultivated nitrate-reducing group were designed and used to develop a real-time SYBR(R) Green PCR assay. The assay was tested with clones from distinct nitrate-reducing groups and applied to various environmental samples. narG copy number was high ranging between 5.08x10(8) and 1.12x10(11) copies per gram of dry weight of environmental sample. Environmental real-time PCR products were cloned and sequenced. Data was used to generate a phylogenetic tree showing that all environmental products belonged to the target group. Moreover, 16S rDNA copy number was quantified in the different environments by real-time PCR using universal primers for Eubacteria. 16S rDNA copy number was similar or slightly higher than that of narG, between 7.12x10(9) and 1.14x10(11) copies per gram of dry weight of environmental sample. Therefore, the yet uncultivated nitrate-reducing group targeted in this study seems to be numerically important in the environment, as revealed by narG high absolute and relative densities across various environments. Further analysis of the density of the nitrate-reducing community as a whole by real-time PCR may provide insights into the correlation between microbial density, diversity and activity.  相似文献   

6.
The Nanoarchaeota, proposed as the fourth sub-division of the Archaea in 2002, are known from a single isolate, Nanoarchaeum equitans, which exists in a symbiotic association with the hyperthermophilic Crenarchaeote, Ignicoccus. N. equitans fails to amplify with standard archaeal 16S PCR primers and can only be amplified using specifically designed primers. We have designed a new set of universal archaeal primers that amplify the 16S rRNA gene of all four archaeal sub-divisions, and present two new sets of Nanoarchaeota-specific primers based on all known nanoarchaeal 16S rRNA gene sequences. These primers can be used to detect N. equitans and have generated nanoarchaeal amplicons from community DNA extracted from Chinese, New Zealand, Chilean and Tibetan hydrothermal sites. Sequence analysis indicates that these environments harbour novel nanoarchaeal phylotypes, which, however, do not cluster into clear phylogeographical clades. Mesophilic hypersaline environments from Inner Mongolia and South Africa were analysed using the nanoarchaeal-specific primers and found to contain a number of nanoarchaeal phylotypes. These results suggest that nanoarchaeotes are not strictly hyperthermophilic organisms, are not restricted to hyperthermophilic hosts and may be found in a large range of environmental conditions.  相似文献   

7.
A 3-primer PCR system was developed to discriminate invasive zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussel. The system is based on: 1) universal primers that amplifies a region of the nuclear 28s rDNA gene from both species and 2) a species-specific primer complementary to either zebra or quagga mussel. The species-specific primers bind to sequences between the binding sites for the universal primers resulting in the amplification of two products from the target species and one product from the nontarget species. Therefore, nontarget products are positive amplification controls. The 3-primer system accurately discriminated zebra and quagga mussels from seven geographically distinct populations.  相似文献   

8.
High-throughput sequencing of ribosomal RNA gene (rDNA) amplicons has opened up the door to large-scale comparative studies of microbial community structures. The short reads currently produced by massively parallel sequencing technologies make the choice of sequencing region crucial for accurate phylogenetic assignments. While for 16S rDNA, relevant regions have been well described, no truly systematic design of 18S rDNA primers aimed at resolving eukaryotic diversity has yet been reported. Here we used 31,862 18S rDNA sequences to design a set of broad-taxonomic range degenerate PCR primers. We simulated the phylogenetic information that each candidate primer pair would retrieve using paired- or single-end reads of various lengths, representing different sequencing technologies. Primer pairs targeting the V4 region performed best, allowing discrimination with paired-end reads as short as 150 bp (with 75% accuracy at genus level). The conditions for PCR amplification were optimised for one of these primer pairs and this was used to amplify 18S rDNA sequences from isolates as well as from a range of environmental samples which were then Illumina sequenced and analysed, revealing good concordance between expected and observed results. In summary, the reported primer sets will allow minimally biased assessment of eukaryotic diversity in different microbial ecosystems.  相似文献   

9.
Environmental PCR is a common tool for surveying aquatic microalgae; however, universal primers generally employed are not specific to phytoplankton and typically recover nonphotosynthetic bacteria at high frequencies. Using a 16S rDNA “phyto‐specific” primer, we were able to selectively amplify sequences of photosynthetic species from several mixed aquatic samples, even when large numbers of nonphotosynthetic microorganisms were present. We identified 21 microalgal sequences from three different habitats: salt marshes in Virginia, river basins in North Carolina, and sea ice in Alaska. In contrast, universal 16S primers recovered a majority of nonphotosynthetic organisms from some of the same samples. Our results indicate that phytoplankton‐specific primers are efficient in selectively amplifying a broad diversity of microalgae in mixed environmental samples and, therefore, can reduce the noise from extraneous species that often dominates molecular surveys of aquatic samples.  相似文献   

10.
One-step PCR amplification of complete arthropod mitochondrial genomes   总被引:11,自引:0,他引:11  
A new PCR primer set which enables one-step amplification of complete arthropod mitochondrial genomes was designed from two conserved 16S rDNA regions for the long PCR technique. For this purpose, partial 16S rDNAs amplified with universal primers 16SA and 16SB were newly sequenced from six representative arthropods: Armadillidium vulgare and Macrobrachium nipponense (Crustacea), Anopheles sinensis (Insecta), Lithobius forficatus and Megaphyllum sp. (Myriapoda), and Limulus polyphemus (Chelicerata). The genomic locations of two new primers, HPK16Saa and HPK16Sbb, correspond to positions 13314-13345 and 12951-12984, respectively, in the Drosophila yakuba mitochondrial genome. The usefulness of the primer set was experimentally examined and confirmed with five of the representative arthropods, except for A. vulgare, which has a linearized mitochondrial genome. With this set, therefore, we could easily and rapidly amplify complete mitochondrial genomes with small amounts of arthropod DNA. Although the primers suggested here were examined only with arthropod groups, a possibility of successful application to other invertebrates is very high, since the high degree of sequence conservation is shown on the primer sites in other invertebrates. Thus, this primer set can serve various research fields, such as molecular evolution, population genetics, and molecular phylogenetics based on DNA sequences, RFLP, and gene rearrangement of mitochondrial genomes in arthropods and other invertebrates.  相似文献   

11.
The small ribosomal subunit contains 16S rRNA in prokaryotes and 18S rRNA in eukaryotes. Even though it has been known that some small ribosomal sequences are conserved in 16S rRNA and 18S rRNA molecules, they have been used separately for taxonomic and phylogenetic studies. Here, we report the existence of two highly conserved ribosomal sequences in all organisms that allow the amplification of a zone containing approximately 495 bp in prokaryotes and 508 bp in eukaryotes which we have named the "Universal Amplified Ribosomal Region" (UARR). Amplification and sequencing of this zone is possible using the same two universal primers (U1F and U1R) designed on the basis of two highly conserved ribosomal sequences. The UARR encompasses the V6, V7 and V8 domains from SSU rRNA in both prokaryotes and eukaryotes. The internal sequence of this zone in prokaryotes and eukaryotes is variable and the differences become less marked on descent from phyla to species. Nevertheless, UARR sequence allows species from the same genus to be differentiated. Thus, by UARR sequence analysis the construction of universal phylogenetic trees is possible, including species of prokaryotic and eukaryotic microorganisms together. Single isolates of prokaryotic and eukaryotic microorganisms from different sources can be identified by amplification and sequencing of UARR using the same pair of primers and the same PCR and sequencing conditions.  相似文献   

12.
Specific DNA sequences from native bacterial populations present in soil, sediment, and sand samples were amplified by using the polymerase chain reaction with primers for either "universal" eubacterial 16S rRNA genes or mercury resistance (mer) genes. With standard amplification conditions, 1.5-kb rDNA fragments from all 12 samples examined and from as little as 5 micrograms of soil were reproducibly amplified. A 1-kb mer fragment from one soil sample was also amplified. The identity of these amplified fragments was confirmed by DNA-DNA hybridization.  相似文献   

13.
Specific DNA sequences from native bacterial populations present in soil, sediment, and sand samples were amplified by using the polymerase chain reaction with primers for either "universal" eubacterial 16S rRNA genes or mercury resistance (mer) genes. With standard amplification conditions, 1.5-kb rDNA fragments from all 12 samples examined and from as little as 5 micrograms of soil were reproducibly amplified. A 1-kb mer fragment from one soil sample was also amplified. The identity of these amplified fragments was confirmed by DNA-DNA hybridization.  相似文献   

14.
以开菲尔(Kefir)粒为材料,经过DNA抽提和16SrDNA V3区PCR扩增,扩增产物经变性梯度凝胶电泳(DGGE)分离并切割电泳条带进行序列测定,并与现有的数据库进行了比较,对Kefir粒的细菌多样性进行分析。结果表明,DGGE图谱中可检测到的8条带的16SrDNA基因序列中有7个基因序列与GenBank数据库登录的相关序列的相似性大于98%,余下的1个基因序列的相似性也大于96%。相似性大于98%的7个克隆中,有3个属于鞘氨醇杆菌属(Sphingobacterium),2个属于乳杆菌属(Lactobacillus),其它2个分别属于肠杆菌属(Errterobacter)和不动杆菌属(Acinetobacter)。首次报道了鞘氨醇杆菌作为优势菌群存在开菲尔Kefir粒中。  相似文献   

15.
以开菲尔(Kefir)粒为材料,经过DNA抽提和16S rDNA V3区PCR扩增,扩增产物经变性梯度凝胶电泳(DGGE)分离并切割电泳条带进行序列测定,并与现有的数据库进行了比较,对Kefir粒的细菌多样性进行分析。结果表明,DGGE图谱中可检测到的8条带的16S rDNA基因序列中有7个基因序列与GenBank数据库登录的相关序列的相似性大于98%,余下的1个基因序列的相似性也大于96%。相似性大于98%的7个克隆中,有3个属于鞘氨醇杆菌属(Sphingobacterium),2个属于乳杆菌属(Lactobacillus),其它2个分别属于肠杆菌属(Enterobacter)和不动杆菌属(Acinetobacter)。首次报道了鞘氨醇杆菌作为优势菌群存在开菲尔Kefir粒中。  相似文献   

16.
Based on the 16S rDNA sequences, species specific primers were designed for the rapid identification by DNA amplification of nine human Bifidobacterium spp., namely B. adolescentis, B. angulatum, B. bifidum, B. breve, B. catenulatum, B. dentium, B. infantis, B. longum, B. pseudocatenulatum. B. lactis currently included in dairy products was added to the series. The primers were designed to target different positions of the 16S rDNA, allowing the simultaneous identification of these ten species of Bifidobacterium using two mixtures of primers. The identification procedure described in this paper was validated by establishing a correlation with an AluI restriction pattern of the different full length amplified 16S rDNA. This multiple primer DNA amplification technique was applied for the identification of pure colonies of Bifidobacterium spp. or directly from total bacteria recovered from human fecal samples. The technique was shown to be useful to detect dominant species and, when primers were used in separate reactions, underrepresented species could be identified as well.  相似文献   

17.
The polymerase chain reaction (PCR) is an in vitro procedure for primer-directed enzymatic amplification of specific template nucleic acid sequences. In order to determine whether a given actinomycete isolated from an actinorhiza (nodule) belongs to the genus Frankia or is a contaminant, we have developed a test based on the PCR. Primers complementary to sequences of two DNA regions corresponding to the nif genes (nifH and nifD) and the rRNA genes (16S and 23S) were specifically chosen to differentially amplify DNAs from Frankia strains but not those from other microorganisms. A series of positive and negative controls were set up by using universal or selective primers resulting in a discriminant amplification, which could be detected after agarose gel electrophoresis. In the nif region, degenerate oligonucleotide primers were used to amplify a target common to all the nitrogen-fixing microorganisms tested, while another set of primers amplified a target with a high specificity for Frankia strains. In the rRNA gene region, universal and specific primers were characterized and tested with DNAs from a wide range of microorganisms. The efficiency of this rapid and sensitive PCR assay was tested with an isolate obtained from Alnus nepalensis nodules, confirming results obtained by nodulation tests.  相似文献   

18.
In this study, we redesigned and evaluated primers for the class Actinobacteria. In silico testing showed that the primers had a perfect match with 82% of genera in the class Actinobacteria, representing a 26-213% improvement over previously reported primers. Only 4% of genera that displayed mismatches did so in the terminal three bases of the 3' end, which is most critical for polymerase chain reaction success. The primers, designated S-C-Act-0235-a-S-20 and S-C-Act-0878-a-A-19, amplified an approximately 640 bp stretch of the 16S rRNA gene from all actinobacteria tested (except Rubrobacter radiotolerans) up to an annealing temperature of 72 degrees C. An Actinobacteria Amplification Resource (http://microbe2.ncl.ac.uk/MMB/AAR.htm) was generated to provide a visual guide to aid the amplification of actinobacterial 16S rDNA. Application of the primers to DNA extracted from marine and terrestrial samples revealed the presence of actinobacteria that have not been described previously. The use of 16S rDNA similarity and DNA-DNA pairing correlations showed that almost every actinomycete clone represented either a new species or a novel genus. The results of this study reinforce the proposition that current culture-based techniques drastically underestimate the diversity of Actinobacteria in the environment and highlight the need to evaluate taxon-specific primers regularly in line with improvements in databases holding 16S rDNA sequences.  相似文献   

19.
Analysis of polymerase chain reaction (PCR) amplified 16S rDNA fragments from environmental samples by denaturing gradients of chemicals or heat [denaturing gradient gel electrophoresis (DGGE) and thermal gradient gel electrophoresis (TGGE)] within polyacrylamide gels is a popular tool in microbial ecology. Difficulties in acceptance of the technique and interpretation of the results remain, due to its qualitative nature. In this study we have addressed this problem by the construction and evaluation of a quantitative standard for incorporation into test DNA samples. The standard was based on a naturally occurring 16S rRNA gene carried by the X-endosymbiont of the psyllid Anomoneura mori, a gamma-proteobacterium. This sequence is the most AT-rich 16S rDNA gene recovered from any cultured organism or environmental sample described to date, and a specifically amplified rDNA fragment denatured under exceptionally low stringency denaturing conditions. The native sequence was modified to incorporate perfect matches to the PCR primers used. The efficiency of amplification of this standard in comparison to a range of 16S rDNA sequences and the errors involved in enumerating template molecules under a range of PCR conditions are demonstrated and quantified. Tests indicated that highly accurate counts of released target molecules from a range of bacterial cells could be achieved in both laboratory mixtures and compost.  相似文献   

20.
【目的】找到适宜的16S rRNA基因通用引物应用策略,应对复杂环境微生物多样性调查,尤其目前高速发展的高通量测序技术带来的巨大挑战。【方法】用Oligocheck软件分别将两对应试的古菌16S rRNA基因通用引物与RDP(Ribosomal database project)数据库中古菌16S rRNA基因序列进行匹配比对。用两对应试引物分别构建海洋沉积物样品的古菌16S rRNA基因文库。【结果】软件匹配结果显示引物f109/r958与目的基因的匹配程度高于引物f21/r958。该结果与古菌16S rRNA基因文库RFLP分析、古菌多样性指数分析结果相吻合。数据还表明,2对引物的综合文库能更好满足该沉积物样品的古菌多样性分析。【结论】选用与数据库中目的基因匹配性高的通用引物和多个引物的联合使用,可以有效提高环境样品微生物多样性调查的分辨率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号