首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
Ifuku S  Kadla JF 《Biomacromolecules》2008,9(11):3308-3313
Regioselective copolymerization of N-isopropylacrylamide (NIPAM) onto cellulose was achieved by atom transfer radical polymerization (ATRP) using a regioselectively modified 6- O-bromoisobutyryl-2,3-di- O-methyl cellulose macroinitiator. Varying the ratio of NIPAM to macroinitiator to ligand to transition metal in a Cu(I)Br/ N, N, N', N', N'-pentamethyldiethylenetriamine (PMDETA) catalyst system affected graft yield and degree of polymerization. ATRP proceeded to completion without any trace of the macroinitiator, and a degree of polymerization (DP) of polyNIPAM up to 46.3 was obtained. Increasing the DP of the NIPAM component increased both the thermal decomposition temperature and the glass transition temperature of the copolymer. The grafting of NIPAM also affected the solubility properties of the methylcellulose. The 6- O-polyNIPAM-2,3-di- O-methyl cellulose formed a stable suspension in water at room temperature and underwent a hydrophillic-to-hydrophobic transition and copolymer precipitation when the temperature was raised above 30 degrees C.  相似文献   

2.
聚丙烯腈纤维固定化青霉素酰化酶合成头孢氨苄的研究   总被引:4,自引:0,他引:4  
将巨大芽孢杆菌胞外青霉素酰化酶通过共价键结合到聚丙烯腈纤维的衍生物上。制成的丝状固定化青霉素酰化酶表现活力达 1 5 3U g(湿重 )。固定化酶合成头孢氨苄的最适pH为 6 5 ,最适温度为 40℃。 7 ADCA的投料浓度以 4%为好 ,7 ADCA与PGME的投料量比率为1∶2 ,最佳用酶量为 1 70U g 7 ADCA。在pH6 5、温度 3 0℃时 ,固定化酶对 7 ADCA的表观米氏常数K7 ADCA为 0 1 6 2mol L ,对PGME的表观米氏常数KPGME为 0 3 6 4mol L ,最大反应速度Vmax为0 0 4 6 2mol·L- 1·min- 1,用固定化酶合成头孢氨苄 ,使用 5 0次保留酶活力 83 9%  相似文献   

3.
A cascade of two enzymatic transformations is employed in a one-pot synthesis of cephalexin. The nitrile hydratase (from R. rhodochrous MAWE)-catalyzed hydration of D-phenylglycine nitrile to the corresponding amide was combined with the penicillin G acylase (penicillin amidohydrolase, E.C. 3.5.1.11)-catalyzed acylation of 7-ADCA with the in situ-formed amide to afford a two-step, one-pot synthesis of cephalexin. D-Phenylglycine nitrile appeared to have a remarkable selective inhibitory effect on the penicillin G acylase, resulting in a threefold increase in the synthesis/hydrolysis (S/H) ratio. 1,5-Dihydroxynaphthalene, when added to the reaction mixture, cocrystallized with cephalexin. The resulting low cephalexin concentration prevented its chemical as well as enzymatic degradation; cephalexin was obtained at 79% yield with an S/H ratio of 7.7.  相似文献   

4.
Summary Affinity matrices, obtained by coupling the ligand phenylacetic acid to Indion 48-R (a racroporous cross linked polystyrene anion exchange resin) through varying spacers, were used to purify penicillin acylase (PA). Homogenous enzyme preparations could be obtained in a single step with over 85% recovery. The effect of spacer variations on the adsorption and elution behaviour of PA is discussed.  相似文献   

5.
Cross-linked enzyme aggregates (CLEAs) are novel type biocatalysts well suited to catalyze reactions of organic synthesis. Penicillin acylase is a versatile enzyme that can both hydrolyze and synthesize β-lactam antibiotics. CLEAs and CLEAs covered with polyionic polymers (polyethyleneimine and dextran sulfate at two different enzyme to polymer ratios) were prepared at varying cross-linking agent to enzyme ratio: 0.15 and 0.25. Results are presented on the effect of such variables on immobilization yield, specific activity, stability and performance of penicillin acylase CLEAs in the kinetically controlled synthesis of cephalexin. The cross-linking agent to enzyme ratio had no significant effect on the specific activity of the CLEAs, but affected immobilization yield, stability in ethylene glycol medium and conversion yield and productivity in the synthesis of cephalexin, being always higher at the lower cross-linking agent to enzyme ratio. Best results were obtained with CLEAs at 0.15 glutaraldehyde to enzyme protein ratio: specific activity of hydrolysis and synthesis was 708 and 325 UI/gCLEA respectively, conversion yield was 87%, specific productivity was 5.4 mmol cephalexin/(gCLEA·h) and 90% of the enzyme remained active after 170 h at operating conditions.  相似文献   

6.
Immobilization of penicillin acylase on acrylic carriers   总被引:2,自引:0,他引:2  
Penicillin acylase obtained from E. Coli (E. C. 3.5.1.11) was covalently bound via glutaric aldehyde to acrylic carriers crosslinked with divinylbenzene or ethylene glycol dimethacrylate. The best enzymatic preparation was obtained by using ethyl acrylate/ ethylene glycol dimethacrylate copolymer. 1 cm3 of the carrier bound 6.4 mg of protein, having 72% activity in relation to the native enzyme. The preparation lost only 10% of its initial activity after 100 d of storage at 4°C. A negligible effect of immobilization on the enzyme activity at different temperatures or pH as well as significant increase of the stability of the immobilized enzyme at elevated temperatures were observed.Abbreviations BA butyl acrylate - AE ethyl acrylate - PA penicillin acylase - 6-APA 6-aminopenicillanic acid - EGDMA ethylene glycol dimethacrylate - DVB divinylbenzene  相似文献   

7.
We describe the rational design of a new efficient biocatalyst and the development of a sustainable green process for the synthesis of cephalosporins bearing a NH? group on the acyl side chain. The new biocatalyst was developed starting from the WT penicillin acylase (PA) from Escherichia coli by combining enzyme mutagenesis, in position α146 and β24 (βF24A/αF146Y), and immobilization on an appropriate modified industrial support, glyoxyl Eupergit C250L. The obtained derivative was used in the kinetically controlled synthesis of cephalexin, cefprozil and cefaclor and compared to the WT-PA and an already described mutant, PA-βF24A, with improved properties. The new biocatalyst posses a very high ratio between the rates of the synthesis and two undesired hydrolyses (acylating ester and the amidic product). In particular, a very low amidase activity was observed with PA-βF24A/αF146Y and, consequently, the hydrolysis of the produced antibiotic was avoided during the process. Taking advantage of this property, higher conversions in the synthesis of cephalexin (99% versus 76%), cefaclor (99% versus 65%) and cefprozil (99% versus 60%) were obtained compared to the WT enzyme. Furthermore, the new mutant also show a higher synthetic activity compared to PA-βF24A immobilized on the same support, allowing the maximum yields to be achieved in very short reaction times. The production of cephalexin with the immobilized βF24A/αF146Y acylase has been developed on a pre-industrial scale (30 l). After 20 cycles, the average yield was 93%. The biocatalyst showed good stability properties and no significant decrease in performance.  相似文献   

8.
Several genes for the enzyme penicillin G acylase, as isolated from four different micro-organisms (Alcaligenes facaelis, Escherichia coli, Kluyvera cryocrescens or Providencia rettgeri) were modified at their carboxy-termini to include His-tag fusions, then were expressed from the plasmid pET-24a(+) in E. coli JM109(DE3) cells. All fusion proteins were next purified to homogeneity in a single step by agar-based Co-IDA chromatography, and were then evaluated as catalysts for the synthesis of cephalexin by a kinetically controlled strategy. We find here that the penicillin G acylase enzyme from K. cryocrescens shows a higher intrinsic synthesis/hydrolysis ratio, when compared to three other enzymes from A. facaelis or P. rettgeri, or E. coli.  相似文献   

9.
Penicillin acylase (PA) is an industrial enzyme that is used to convert penicillin G into a precursor for semisynthetic penicillins. We have cloned a segment of DNA that codes for the two subunits required for PA activity. We also report the nucleotide sequence of a DNA fragment that codes for (i) the small subunit, (ii) the N-terminal region of the large subunit and (iii) a putative connecting peptide. These results confirm the existence of a common precursor for both peptides.  相似文献   

10.
To improve the performance of covalently immobilized penicillin acylase (PA), the immobilization was carried out in mesocellular silica foams (MCFs) using p-benzoquinone as cross linker. The characterizations of the immobilized enzyme were studied carefully. The results showed that the relative activity of the immobilized PA was increased to 145% of that of free enzyme. The activity was 3.7 folds of that of PA on the silica nanoparticles. The enzyme in MCFs presented a turnover equal to that of free enzyme. It was also found that the optimum pH of the immobilized PA shifted to pH 7.5 and the optimum reaction temperature rose from 45 to 50 degrees C. Furthermore, the stability of PA was ameliorated greatly after immobilization. Fourier transform infrared spectroscopy showed no major secondary structural change for PA confined in MCFs. The proposed covalent immobilizing technique would rank among the potential strategies for efficient immobilization of PA.  相似文献   

11.
A novel approach for the isolation and purification of penicillin acylase (PA), which couples aqueous two-phase partitioning and enzyme immobilization has been investigated.A PA yield of 90% was achieved by treating E. coli cells with 4% butyl acetate, freeze-thawing step, and pressure homogenization. PA purification (93% recovery) was achieved by (1) removing cell debris via precipitation with polyethylene glycol (PEG 2000); (2) aqueous two-phase partitioning using a PEG 2000 + phosphate system (87% recovery).An in situ enzyme immobilization approach, using oxirane acrylic or aldehyde-agarose beads dispersed in the PEG-rich phase, was explored for the conversion of penicillin G to 6-aminopenicillanic acid. An appropriate immobilization reaction time was found. The catalytic performance of the enzyme, when immobilized, was found not to be affected by recycling of the phase-forming components.  相似文献   

12.
Formation of inclusion bodies is an important obstacle to the production of active recombinant protein in Escherichia coli. Thus, soluble expression of penicillin G acylase from Kluyvera citrophila was investigated in BL21(DE3). In this study, the yield of active enzyme was significantly enhanced by the composition of the medium and induction opportunity. When 0.5 mmol/L IPTG was added to complex medium at 15 h after incubation, the volumetric and specific activities of penicillin G acylase both achieved the highest values, respectively. However, aggravation of intracellular proteolysis and decline of enzyme expression were also observed if induction occurred too much later. Ca2+ ion was another critical factor in cell growth and protein expression. When 24 mmol/L Ca2+ ion was adding to the medium at the beginning of fermentation, a greater than 2-fold increase in cell density and a 7-fold increase in volumetric activity of penicillin G acylase were reached. Nevertheless, no significant benefit for recombination protein expression was found when excess Ca2+ was added after induction time. This study demonstrates that the induction starting time and Ca2+ ion are two critical factors for the expression of active penicillin G acylase.  相似文献   

13.
The effect of methanol on the kinetically controlled synthesis of cephalexin by free and immobilized penicillin G acylase (PGA) was investigated. Catalytic and hydrophobic membranes were obtained by chemical grafting, activation, and PGA immobilization on hydrophobic nylon supports. Butyl methacrylate (BMA) was used as graft monomer. Increasing concentrations of methanol were found to cause a greater deleterious effect on the activity of free than on that of the immobilized enzyme. Methanol, however, improved the kinetic stability of cephalexin synthesized by free PGA, resulting in higher maximum yields. By contrast, immobilized PGA reached 100% yields even in the absence of the cosolvent. Cephalexin synthesis by the catalytic membrane was also performed in a non-isothermal bioreactor. Under these conditions, a 94% increase of the synthetic activity and complete conversion of the limiting substrate to cephalexin were obtained. The addition of methanol reduced the non-isothermal activity increase. The physical cause responsible for the non-isothermal behavior of the hydrophobic catalytic membrane was identified in the process of thermodialysis.  相似文献   

14.
Synthesis of cephalexin with immobilized penicillin acylase at high substrates concentration at an acyl donor to nucleophile molar ratio of 3 was comparatively evaluated in aqueous and ethylene glycol media using a statistical model. Variables under study were temperature, pH and enzyme to substrate ratio and their effects were evaluated on cephalexin yield, ratio of initial rates of cephalexin synthesis to phenylglycine methyl ester hydrolysis, volumetric and specific productivity of cephalexin synthesis, that were used as response parameters. Results obtained in both reaction media were modeled using surface of response methodology and optimal operation conditions were determined in terms of an objective function based on the above parameters. At very high substrates concentrations the use of organic co-solvents was not required to attain high yields and actually almost stoichiometric yields were obtained in a fully aqueous media with the advantages of higher productivities than in an organic co-solvent media and compliance with the principles of green chemistry.  相似文献   

15.
两水相体系在发展中存在的关键问题是相体系回收困难.由于生产成本及降低污染的原因, 用过的相体系需要回收和重复使用.用环境敏感型溶解可逆聚合物形成可回用两水相体系是当前是为可行的回收方法。本文在光敏感可回用高聚物PNBC与pH敏感型可回用高聚物PADB形成的两水相体系中进行固定化青霉素酰化酶的相转移催化青霉素G产生6-APA的反应。在这个两水相体系中,通过优化,在1% NaCl 存在下,6-APA的分配系数可达5.78。催化动力学显示,达平衡的时间近7h,反应最高得率约85.3%(pH 7.8, 20℃)。较相近条件下的单水相反应得率提高近20%。在反应过程中,通过底物及产物的分配系数检测,发现底物分配系数变化不大,而产物6-APA及苯乙酸的分配系数发生很大变化,从而引起产物的得率变化。在两水相中,底物及产物主要分配在上相,固定化酶分配在下相,底物青霉素G进入下相经酶催化产生的6-APA及苯乙酸又转入上相,从而解除了青霉素酰化酶催化反应的底物及产物抑制作用,达到提高产物得率的效果。此外,采用固定化酶较固定化细胞效率高,占用下相体积小,较游离酶稳定性高,且完全单侧分配在下相。因此,在两水相中进行固定化酶的催化反应具有明显的优越性。形成两水相的高聚物PNBC通过488 nm 的激光照射或经滤光的450nm 光源照射得到回收;pH敏感型成相聚合物PADB可通等电点 4.1沉淀可实现循环利用,高聚物的回收率在95%-98%之间,按此回收率计算,聚合物可使用60次以上。  相似文献   

16.
聚丙烯腈纤维固定化青霉素酰化酶性质的研究   总被引:3,自引:0,他引:3  
将巨大芽孢杆菌(Bacillusmegaterium)青霉素酞化酶连接到聚丙烯腈纤维载体上,制成固定化青霉素酰化酶。其表现活力约为2000u/g。水解青霉素G的最适温度为50℃;最适PH为9.0;在PHS.5~10.3、温度50℃以下酶的活力稳定;表观米氏常数Ka为1.33×10-8mol/L;最大反应速度Vm为2.564mmol·min-1;苯乙酸为竞争性抑制剂,抑制常数为0.16mol/L。水解10%的青霉素G钾盐溶液,使用20批,保留酶活力80%。  相似文献   

17.
The DNA fragment encoding Kluyvera citrophila penicillin G acylase (KcPGA) was amplified and cloned into the vector pET28b to obtain a C-terminus His-tagged fusion expression plasmid. The fusion protein KcPGA was successfully overexpressed in Escherichia coli BL21(DE3). The optimal induction concentration of isopropylthio-beta-D-galactoside (IPTG) was found to be 5 microM. The fusion protein was purified in a single step by Ni-IDA affinity chromatograph to a specific activity of 35.3U/mg protein with a final yield of 89% representing a 23-fold purification. The data presented here suggest that the purified fusion protein is stable with respect to pH and temperature. The optimal pH and temperature of recombinant KcPGA are 8.5 and 55 degrees C, respectively. The Km and Vmax are 17.6 microM and 23.8 U/mg, respectively. Therefore, the high yield and high specific activity of recombinant KcPGA produced in E. coli, together with other kinetic parameters, represent an excellent basis for further development of recombinant KcPGA as an immobilized biocatalyst for industrial applications.  相似文献   

18.
The surface carboxylic groups of penicillin G acylase and glutaryl acylase were chemically aminated in a controlled way by reaction with ethylenediamine via the 1-ethyl-3-(dimethylamino-propyl) carbodiimide coupling method. Then, both proteins were immobilized on glyoxyl agarose. In both cases, the immobilization of the chemically modified enzymes improved the enzyme stability compared to the stability of the immobilized but non-modified enzyme (by a four-fold factor in the case of PGA and a 20-fold factor in the case of GA). The chemical modification presented a deleterious effect on soluble enzyme stability. Therefore, the improved stability should be related to a higher multipoint covalent attachment, involving both the lysine amino groups and also the new amino groups chemically introduced on the enzyme. Moreover, the lower pK(a) of the new amino groups permitted to immobilize the enzyme under milder conditions. In fact, the aminated proteins could be immobilized even at pH 9, while the non-modified enzymes could only be immobilized at pH over 10.  相似文献   

19.
新的分离纯化青霉素酰化酶方法的研究   总被引:1,自引:0,他引:1  
按0.6%(w/v)的比例将皂土加到青霉索酰化酶发酵上清液中,可将酶100%吸附,而吸附的蛋白质仅占发酵上清液中的10%左右。吸附时的pH和无机盐对酶的吸附影响不大。使用不同pH和种类的缓冲液洗涤皂土-酶复合物,不能将酶洗脱,但可洗脱15%左右吸附的杂蛋白。使用含10%以上的PEG和NaCl的磷酸缓冲液可将酶全部洗脱.酶纯化25倍,浓缩6倍左右。此法特点是简便,酶活力收率高,可在常温下操作,也可直接从未除菌体的发酵液中提取酶,具有工业应用价值。  相似文献   

20.
Addition of bovine serum albumin (BSA) as a proteic feeder facilitates obtaining cross-linked enzyme aggregates (CLEAs) in cases where the protein concentration in the enzyme preparation is low and/or the enzyme activity is vulnerable to the high concentration of glutaraldehyde required to obtain aggregates. CLEAs of Pseudomonas cepacia lipase and penicillin acylase were prepared. CLEA of lipase prepared in the presence of BSA retained 100% activity whereas CLEA prepared without BSA retained only 0.4% activity of the starting enzyme preparation. Lipase CLEA showed 12-fold increase in activity over free enzyme powder when the CLEA was used in transesterification of tributyrin. For the transesterification of Jatropha oil, while free enzyme powder required 8 h and 50 mg lipase to obtain 77% conversion, CLEA required only 6 h and 6.25 mg lipase to obtain 90% conversion. In the case of penicillin acylase, 86% activity could be retained in CLEA prepared with BSA whereas CLEA made without BSA retained only 50% activity. CLEA prepared without BSA lost 20% activity after 8 h at 45 degrees C whereas CLEA with BSA retained full activity. CLEA prepared with BSA showed Vmax/Km of 36.3 min-1 whereas CLEA prepared without BSA had Vmax/Km of 17.4 min-1 only. Scanning electron microscopy analysis showed that CLEAs prepared in the presence of BSA were less amorphous and closer in morphology to CLEAs of other enzymes described in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号