首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The nutritional quality of phloem sap utilized by natural aphid populations   总被引:10,自引:0,他引:10  
Abstract.
  • 1 The amino acid content of phloem exudates from leaves and of aphid honeydew were adopted as indices of the nutritional quality of phloem sap for aphids. Four plant species and associated leaf-dwelling aphids were investigated: the sycamore Acer pseudoplanatus and sycamore aphid Drepanosiphum platanoides; Prunus domestica (victoria plum) and the mealy plum aphid Hyalopterus pruni; and the spindle tree Euonymus europaeus and broad-bean Vicia faba, both hosts of the black bean aphid Aphis fabae.
  • 2 The concentration of amino acids in the phloem exudates varied with: (a) plant species (greater in the herb Vicia than in the tree species), (b) season (greater in the autumn than summer for Acer and Euonymus), and (c) position (greater in flush leaves than mature leaves of Prunus).
  • 3 For Acer and Prunus and their aphids, the concentration of amino acids in phloem exudates was significantly correlated with the amino acid content of the aphid honeydew.
  • 4 The amino acids in all exudates and honeydew were dominated by non-essential amino acids (glutamic acid, glutamine, asparagine or serine, varying with season and between plant species). The sole major discrepancy between the amino acid profiles of exudates and honeydew was the production of asparagine-rich honeydew by aphids feeding on leaves, whose exudates were dominated by glutamic acid; this applied to both H.pruni on mature Prunus leaves and Drepanosiphum platanoides on summer-leaves of Acer.
  • 5 It is suggested that EDTA-exudation may be a useful technique to study nutritional correlates of aphid life cycles, e.g. the time of migration between primary and secondary plant hosts.
  相似文献   

2.
Abstract.The effects of water stress on phloem sap quality of the melon, Cucumis melo, and how this, in turn, has an impact on the sweet potato whitefly, Bemisia tabaci were studied. Melon plants were grown under watering regimes that produced plants with or without water stress. Plants showed strong developmental responses to the treatments; water-stressed plants were shorter, with fewer, smaller leaves than those without stress. There was, however, no effect of plant water stress on the development period of whiteflies feeding on these plants, or on the weights of male or female adults. Honeydew production was used as an indirect measure to test whether the absence of insect developmental or behavioural effects was due to differential phloem sap ingestion. Feeding rates on the stressed plants were almost half those on unstressed plants, and there was also variation in the daily pattern of honeydew production. Phloem sap and honeydew were analysed to determine why the feeding behaviours differed. Amino acid composition of the phloem sap was similar in both groups of plants, but carbohydrate concentrations were greater in water-stressed plants, indicating that lower feeding rates may have been due either to the physical or nutritional quality of the phloem sap. The honeydew of insects that were feeding on water-stressed plants contained a greater concentration of carbohydrate than those on unstressed plants, and was composed of a significantly greater proportion of glucose and the disaccharide, trehalulose. This isomerization of more complex sugars from those in the diet suggests that B. tabaci uses a mechanism of osmoregulation to actively maintain its internal water status. It is concluded that transient conditions of water stress in this host plant do not affect the development of B. tabaci, due to physiological and behavioural changes in response to diets with different nutritional and physical properties. The implications of this finding for the feeding biology of B. tabaci on desert-grown crops are discussed.  相似文献   

3.
Feeding behaviour of the lettuce root aphidPemphigus bursarius was monitored electronically on six lettuce varieties. Aphids, monitored for a minimum of 5 h on lettuce roots, performed recognizable feeding behaviour on the susceptible varieties, Webbs Wonderful and Borough Wonder including non probing, pattern A start of new penetration, C (stylet pathway activities) sometimes including clear B-waves (salivary sheath secretions), potential drops (intracellular penetrations), intracellular E (phloem ingestion) distinguishing E1 and E2 (Tjallingii, 1990) and occasionally xylem ingestion. Although aphid probing was recorded on the resistant varieties Lakeland and Grand Rapids continued penetration to the phloem elements was deterred and the time spent ingesting phloem was short. Aphids rarely probed the resistant varieties Avoncrisp and Avondefiance and all attempted penetrations quickly terminated.  相似文献   

4.
Variation in phloem sap composition is important in determining aphid performance and is known to occur at both diurnal timescales and in response to plant age. For field grown potato plants, Solanum tuberosum L. (Solanaceae), we determined diurnal variation in components of phloem sap, measured by ethylene diamine tetra‐acetate exudation, and tested for impacts of plant age. The effects of plant age and diurnal cycles on honeydew production by Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) (both Hemiptera: Aphididae) were also quantified. Both the ratio of sucrose to amino acids and the composition of amino acids in phloem sap varied significantly with time of day. Dietary essential amino acids contributed a smaller proportion of amino acids in the phloem sap of older plants and during early phases of the diurnal cycle. The only significant effect on aphid honeydew production was of the diurnal cycle for Ma. euphorbiae, although increased honeydew production during the day when compared with the production at night, was consistent across the two species. In contrast with studies carried out at seasonal scales, we found limited evidence for variation in phloem sap composition in response to plant age, consistent with our results for honeydew production. These data highlight the need for improved understanding of how seasonal and diurnal physiology of plants influence performance in phloem sap feeding insects.  相似文献   

5.
Several aphid honeydews were incorporated into sucrose solutions and presented to hop aphids, Phorodon humuli (Schrank), as artificial diets in free-choice bioassays. Small additions of honeydew collected from two species of aphid feeding on hop, Humulus lupulus L., arrested the searching behavior of the hop aphid and appeared to stimulate prolonged periods of ingestion. This effect was more dependent on the host plant honeydew source than the species of aphid that produced the honeydew. Aphid honeydews collected from plants other than hop (non-hosts to P. humuli) contained hop aphid phagostimulants that were less effective. Our results indicate that analysis of aphid honeydew could help describe chemical cues involved in the recognition of appropriate host plants by aphid species.  相似文献   

6.
Both above- and below-ground interspecific interactions contribute to ecosystem functioning in terrestrial systems, and the integration of below- and above-ground interactions is crucial for deepening our knowledge of nutrient cycling and community dynamics in terrestrial ecosystems. The present study explored the effects of plant–microbe interactions on aphid honeydew quality and quantity and important factors mediating ant–aphid mutualisms and below-ground nutrient dynamics. Soybean aphids (Aphis glycines) were inoculated onto two closely related strains of soybean plants: a nodulating strain that associates with rhizobia and a non-nodulating strain that does not harbor any nitrogen-fixing bacteria. As expected, prior to aphid inoculation, nodulating plants were significantly taller and had more leaves than non-nodulating plants. Aphids feeding on nodulating strains were found to reach slightly larger colony sizes and produce honeydew with significantly different sugar profiles than those feeding on non-nodulating plants. The honeydew collected from aphid colonies feeding on nodulating plants contained 160 % more total sugars than honeydew collected from colonies feeding on non-nodulating plants, but there was no difference in total amino acid-N content in honeydew from colonies feeding on the different plant strains. We discuss the implications of honeydew composition for nutrient cycling and community dynamics and suggest areas of future research to elucidate the consequences of altered aphid honeydew composition on ecosystem properties.  相似文献   

7.
Plant penetration behaviour (probing) of the cabbage aphid, Brevicoryne brassicae, and the pea aphid, Acyrthosiphon pisum, was studied on excised leaves of broad beans, Vicia faba, kept in water or in a 1% aqueous solution of sinigrin. Using the DC EPG (Electrical Penetration Graph) technique it was shown that the cabbage aphid on sinigrin-untreated bean leaves showed numerous short probes into epidermis and mesophyll. None of these aphids showed either phloem salivation or ingestion waveforms on untreated leaves. In contrast, on sinigrin-treated bean leaves, 35% of the probing time was spent on phloem sap ingestion (E2) and almost all aphids reached phloem vessels and started feeding. The duration of phloem salivation before phloem ingestion and the mean duration of phloem ingestion periods were similar on a host and a sinigrin-treated non-host plant. However, the total probing time by B. brassicae was 10% longer, the total phloem sap ingestion time was twice as long, and the time to the first phloem phase within a probe was three times shorter on the host plant compared to sinigrin-treated broad beans. Acyrthosiphon pisum also responded to the addition of sinigrin to broad beans, but in this case sinigrin acted as a deterrent. On sinigrin-treated leaves, A. pisum terminated probes before ingestion from phloem vessels, and none of these aphids showed phloem salivation and ingestion on treated leaves. Glucosinolates were detected in the mesophyll cells of the brassicaceous plant, Sinapis alba. Based on this finding and in addition to the foregoing EPG analysis of aphid probing on these plants and broad beans, our hypothesis is that aphids may recognise their host plants as soon as they probe the mesophyll tissue and before they start ingestion from phloem vessels.  相似文献   

8.
In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem‐feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant‐species‐specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field.  相似文献   

9.
Abiotic and biotic host-plant stress, such as desiccation and herbivory, may strongly affect sap-sucking insects such as aphids via changes in plant chemicals of insect nutritional or plant defensive value. Here, we examined (i) water deprivation and (ii) defoliation by the beetle Leptinotarsa decemlineata as stresses indirectly affecting the aphid Macrosiphum euphorbiae via its host plant Solanum tuberosum. For plant-induced stress, aphids were reared on healthy vs. continuously stressed potato for 14 days (no watering; defoliation maintained at approximately 40%). Aphid performance under stress was correlated with metabolic responses monitored by profiling of the aphid proteome. M. euphorbiae was strongly affected by water stress, as adult survival, total aphid number and biomass were reduced by 67%, 64%, and 79%, respectively. Aphids performed normally on defoliated potato, indicating that they were unaffected or able to compensate any stress induced by plant defoliation. Stressed aphid proteomes revealed 419-453 protein spots, including 27 that were modulated specifically or jointly under each kind of host-plant stress. Reduced aphid fitness on water-stressed plants mostly correlated with modulation of proteins involved in energy metabolism, apparently to conserve energy in order to prioritize survival. Despite normal performance, several aphid proteins that are known to be implicated in cell communication were modulated on defoliated plants, possibly suggesting modified aphid behaviour. The GroEL protein (or symbionin) of the endosymbiont Buchnera aphidicola was predominant under all conditions in M. euphorbiae. Its expression level was not significantly affected by aphid host-plant stresses, which is consistent with the high priority of symbiosis in stressed aphids.  相似文献   

10.
This study sheds light on a poorly understood area in insect-plant-microbe interactions,focusing on aphid probing and feeding behavior on plants with varying levels of arbuscular mycorrhizal(AM)fungus root colonization.It investigates a commonly occurring interaction of three species:pea aphid Acyrthosiphon pisum,barrel medic Medicago truncatula,and the AM fungus Rhizophagus irregularis,examining whether aphid-feeding behavior changes when insects feed on plants at different levels of AM fungus colonization(42% and 84% root length colonized).Aphid probing and feeding behavior was monitored throughout 8 h of recording using the electrical penetration graph(EPG)technique,also,foliar nutrient content and plant growth were measured.Summarizing,aphids took longer to reach their 1st sustained phloem ingestion on the 84% AM plants than on the 42% AM plants or on controls.Less aphids showed phloem ingestion on the 84% AM plants relative to the 42% AM plants.Shoots of the 84% AM plants had higher percent carbon(43.7%)relative to controls(40.5%),and the 84% AM plants had reduced percent nitrogen(5.3%)relative to the 42% AM plants(6%).In conclusion,EPG and foliar nutrient data support the hypothesis that modifications in plant anatomy(e.g.,thicker leaves),and poor food quality(reduced nitrogen)in the 84% AM plants contribute to reduced aphid success in locating phloem and ultimately to differences in phloem sap ingestion.This work suggests that M.truncatula plants benefit from AM symbiosis not only because of increased nutrient uptake but also because of reduced susceptibility to aphids.  相似文献   

11.
Aphid species can be polyphagous, feeding on multiple host plants across genera. As host plant species can have large variation in their phloem composition, this can affect aphid fitness and honeydew composition. Previous research showed significant intraspecific genotype variation in the composition of the honeydew carbohydrates of the black bean aphid Aphis fabae, with the ant attractant trisaccharide melezitose showing especially large variation across different genotypes. In this study, we test if variation in melezitose and carbohydrate composition of aphid honeydew could be linked to the adaptation of specific aphid genotypes to particular host plants. To this end, 4 high and 5 low melezitose secreting genotypes of the black bean aphid Aphis fabae were reared on 4 common host plants: broad bean, goosefoot, beet, and poppy. The carbohydrate composition, and in particular melezitose secretion, showed important aphid genotype and host plant interactions, with some genotypes being high melezitose secreting on 1 host plant but not on another. However, the interaction effects were not paralleled in the fitness measurements, even though there were significant differences in the average fitness across the different host plants. On the whole, this study demonstrates that aphid honeydew composition is influenced by complex herbivore–plant interactions. We discuss the relevance of these findings in the context of ant–aphid mutualisms and adaptive specialization in aphids.  相似文献   

12.
The feeding behaviour of the aphid Megoura crassicauda Mordivilko (Homoptera: Aphididae), which feeds selectively on plants in the genus Vicia (Fabaceae), was studied. The aphids deposited proteinaceous stylet sheaths intercellularly towards the phloem tissues of host plants. Similar stylet sheaths were formed on a Parafilm membrane when host‐specific acylated flavonoid glycosides [two 2″‐O‐(E)‐p‐coumaroyl esters of quercetin 3‐O‐diglycosides] present in the extracts of the narrow vetch, Vicia angustifolia L., were supplied in the solution covered by the membrane. In contrast, their corresponding deacyl analogues, present more abundantly in the host plant tissues, were not stimulatory, which suggested specificity in the structural requirements of the probing stimulants. While the aphids imbibed an artificial diet composed of primary nutrients (e.g., sucrose and amino acids) and produced a large quantity of honeydew, acylated flavonoids alone and non‐acylated flavonoids supplied with the nutrients more or less suppressed honeydew production. These findings implied that the acylated flavonoids serve as a cue to navigate the stylet sheath towards the phloem prior to sap‐sucking, whereas non‐acylated flavonoids may serve as a negative stimulus to refrain from sucking during tissue penetration before tapping the phloem, although the distribution of these compounds in the plant tissues remains unknown. Thus, the feeding behaviour of M. crassicauda appears to be controlled by multiple chemical stimuli in the process of the settling on its host plant.  相似文献   

13.
Aphids are dependent on the phloem sap of plants as their only source of nutrients. Host‐plant resistance in lettuce, Lactuca sativa L. (Asteraceae), mediated by the Nr gene is used to control the lettuce aphid Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae). The resistance is located in the phloem; however, the exact mechanism of resistance is unknown. In this study, we investigated whether the resistance factor (or factors) is synthesized in the root or in the shoot. The feeding behavior and performance of avirulent N. ribisnigri were studied on grafts of resistant and susceptible lettuce. In addition, the persistence of resistance in excised lettuce tissue was measured, by studying the feeding behavior and performance of N. ribisnigri on detached leaves and leaf disks of resistant lettuce. It appears that the resistance factor encoded by the Nr gene is produced in the shoots: aphid feeding was reduced on resistant shoots grafted on susceptible roots, whereas aphids were able to feed on grafts of susceptible shoots on resistant roots. Partial loss of resistance was observed after detachment of leaves and excision of leaf disks from resistant plants. Aphids fed longer on excised resistant plant tissue compared with intact resistant plants; however, compared with excised plant tissue of the susceptible cultivar, the time spent on feeding was shorter, indicating resistance was not completely lost. Our findings caution against the use of excised leaf material for aphid resistance bioassays.  相似文献   

14.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

15.
Xylem ingestion by winged aphids   总被引:3,自引:0,他引:3  
When aphids and their host plant are incorporated in a DC electrical circuit, phloem and xylem ingestion register as separate waveforms of the electrical penetration graph (EPG) signal. Aphids are primarily phloem feeders; xylem ingestion is seldom reported but can be induced experimentally by fasting the insects in desiccating conditions. In experiments with the black bean aphid, Aphis fabae Scop., young winged (alate) and unwinged (apterous) virginoparous adults were collected from their natal host plants (broad bean, Vicia faba L.) and allowed 3-h continuous EPG-recorded access to V. faba seedlings. Several aphids (47% of both morphs) showed ingestion from phloem sieve elements. Alate aphids also showed frequent xylem ingestion (60% of individuals), but no apterous aphids exhibited this activity. The EPG technique involves attachment of a fine gold wire electrode to each insect, a process that may affect normal behaviour at the plant surface. However, when the technique was modified to monitor the stylet activities of freely-settled aphids, high levels of xylem ingestion by alates were also recorded. The results suggest that the developmental physiology of winged aphids somehow predisposes them to xylem ingestion, possibly as a result of dehydration during the teneral period. Alate aphids may reduce their weight by fasting before take-off, giving aerodynamic benefits, but making rehydration, via xylem uptake, a priority following plant contact.  相似文献   

16.
Aphids are phloem feeders and an important assumption has been that reproduction is initiated only after phloem ingestion. Here we investigate the plant tissue location of parturition cues in winged and wingless, summer virginoparae and autumn migrants (gynoparae) of the black bean aphid, Aphis fabae. These seasonal forms have different host preferences. Using electrical penetration graph (EPG: to observe activity of the mouthparts) and video-monitoring procedures we demonstrate that the time to first parturition after host-plant contact is significantly shorter than the time to first registered phloem contact in the summer winged form. In gynoparae, the time to first parturition does not significantly differ from time to first phloem contact but is shorter than time to first phloem ingestion. Times to first parturition, first registered phloem contact and first phloem ingestion do not differ significantly in the summer wingless form. Simultaneous EPG and video recording procedures show that a high proportion of individuals of all morphs (45-70%) initiate reproduction before sustained phloem activities (salivation/ingestion). The only behaviours that all individuals demonstrate before first parturition are ‘non-penetration’ (aphid on plant surface with mouthparts outside plant) and stylet ‘pathway activity’, including secretion of gelling saliva and penetration of the non-vascular (epidermis and mesophyll) cells. A short period of penetration of the peripheral plant tissues (five cell punctures per individual) by aphids tethered and monitored by EPG decreases the time to first parturition of the winged summer form when subsequently placed on a Parafilm sachet containing 15% sucrose solution. This treatment also significantly increases the incidence of reproduction and individual reproductive output of gynoparae over a 24-h period. No detectable effects of tissue penetration on subsequent reproductive output are observed in the wingless summer form. Additionally, EPGs reveal that a number of aphids of all morphs display xylem ingestion, which occurs predominantly before initiation of phloem feeding but is not necessary to initiate parturition. It is concluded that aphids are likely to detect parturition cues during stylet punctures of cells within peripheral tissue layers, before reaching the phloem vessels.  相似文献   

17.
Aphids produce gel saliva during feeding which forms a sheath around the stylet as it penetrates through the apoplast. The sheath is required for the sustained ingestion of phloem sap from sieve elements and is thought to form when the structural sheath protein (SHP) is cross‐linked by intermolecular disulphide bridges. We investigated the possibility of controlling aphid infestation by host‐induced gene silencing (HIGS) targeting shp expression in the grain aphid Sitobion avenae. When aphids were fed on transgenic barley expressing shp double‐stranded RNA (shp‐dsRNA), they produced significantly lower levels of shp mRNA compared to aphids feeding on wild‐type plants, suggesting that the transfer of inhibitory RNA from the plant to the insect was successful. shp expression remained low when aphids were transferred from transgenic plants and fed for 1 or 2 weeks, respectively, on wild‐type plants, confirming that silencing had a prolonged impact. Reduced shp expression correlated with a decline in growth, reproduction and survival rates. Remarkably, morphological and physiological aberrations such as winged adults and delayed maturation were maintained over seven aphid generations feeding on wild‐type plants. Targeting shp expression therefore appears to cause strong transgenerational effects on feeding, development and survival in S. avenae, suggesting that the HIGS technology has a realistic potential for the control of aphid pests in agriculture.  相似文献   

18.
Induced plant responses may affect the behaviour and growth of the attacking herbivore insect. The aphid Sipha flava (Forbes) produces reddish spots on the infested leaf of its host plant Sorghum halepense (L.). In order to assess the consequences on the aphid of this presumptive induced plant response, we studied the feeding behaviour and growth of S. flava on previously infested and non-infested leaves of S. halepense. Considering that the reddish pigment could play a defensive role, its effect on aphid survival was determined in artificial diets. In addition, changes in the histology of the leaf and the chemical nature of the induced pigment were also studied. Aphids devoted a significantly shorter total time to non-penetration activities in infested than in non-infested leaves. Time before the first phloem ingestion tended to be shorter in infested leaves. The mean relative growth rate of S. flava nymphs was significantly higher on infested than on non-infested leaves. Survival of aphids on diet containing the reddish extract was not significantly different from that on the control diet. Infestation of S. halepense by S. flava produced a reddish coloration in the leaf, which was identified as an anthocyanin by UV-visible spectrometry. Light microscopy showed that only mesophyll cells of previously infested plants presented swelled, dispersed, and heterogeneously stained chloroplasts with a higher accumulation of starch granules, no grana arranged in stacks, and reduction in the amount of inner membranes (thylakoids), relatively to chloroplasts of non-infested leaves. Scanning electron micrographs of leaf surface revealed reduced presence of crystalline epicuticular waxes of epidermal cells in infested leaves as compared to non-infested ones. The main conclusion is that the attack of S. flava to S. halepense leaves induced plant susceptibility where aphid feeding behaviour and growth were both enhanced on previously infested leaves.  相似文献   

19.
Feeding behaviour of the specialist Brassicae aphid, Brevicoryne brassicae (L) (cabbage aphid) and the generalist, Myzus persicae, (Sulzer) (peach potato aphid) was monitored electronically on the susceptible cauliflower, Brassica oleracea var. botrytis cv Newton Seale, and a range of 17 Brassica species, B. carinata, B. juncea, B. nigra, B. macrocarpa, and B. villosa var. drepanensis and cultivated brassica varieties, B. oleracea, B. campestris and B. napus. Aphids, monitored for 10 h on the underside of leaves, performed recognisable feeding behaviour on all brassica species. The main differences in feeding behaviour, between M. persicae and B. brassicae, on the susceptible cauliflower Newton Seale, were fewer probes, shorter times to initially reach the phloem but longer times to establish sustained phloem ingestion and the longer times spent, by M. persicae, in xylem ingestion.Feeding behaviour on the range of brassica species tested indicated that generalist and specialist aphids are influenced differently by the host plant. A longer time spent in xylem ingestion was again the major difference in the feeding behaviour of the two aphids. In addition, rejection of passive phloem ingestion, by M. persicae, was not related so closely to increased time spent in non probing activities, as for B. brassicae. This observation indicates that M. persicae does not generally accept or reject brassica species due to the presence of phagostimulants, such as glucosinolates at the leaf surface or along the stylet pathway, unless the concentration is very high. Differences in feeding strategies employed by generalist and specialist aphids on the same plants are discussed.  相似文献   

20.
  1. The giant willow aphid Tuberolachnus salignus is an invasive pest in New Zealand, attacking over 50 species and hybrids of willow. The aphids produce copious amounts of honeydew, which is used by other insects as a food source.
  2. When foraged by honeybees, T. salignus honeydew causes honey to crystallize in the comb and affects bee health; these effects are associated with the elevated melezitose content in the honeydew. The impact of host plant-related factors on T. salignus honeydew melezitose content remains unknown.
  3. This study investigated the effect of willow cultivar and plant age on the melezitose content (and that of other sugars) of T. salignus honeydew. To do so, we conducted high-performance liquid chromatography analyses of honeydew samples from 13 willow clones collected in the same season (autumn) from 1- and 2-year old plants under field conditions.
  4. Melezitose was the most abundant of the measured sugars in most samples, but its content did not vary significantly with willow cultivar or plant age. By contrast, sucrose was significantly affected by both factors. Fructose and glucose were significantly impacted by willow plant age and cultivar, respectively. A significant cultivar*age interaction was observed for all sugars.
  5. We recommend the selection of resistant willow cultivars and further research on potential biocontrol agents to lessen melezitose-related problems in apiculture industries.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号