首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aims This study assesses the relationship between phylogenetic relatedness of angiosperm tree species and climatic variables in local forests distributed along a tropical elevational gradient in South America. In particular, this paper addresses two questions: Is phylogenetic relatedness of plant species in communities related to temperature variables more strongly than to water variables for tropical elevational gradients? Is phylogenetic relatedness of plant species in communities driven by extreme climatic conditions (e.g. minimum temperature (MT) and water deficit) more strongly than by climatic seasonal variability (e.g. temperature seasonality and precipitation seasonality)?Methods I used a set of 34 angiosperm woody plant assemblages along an elevational gradient in the Andes within less than 5 degrees of the equator. Phylogenetic relatedness was quantified as net relatedness index (NRI) and nearest taxon index (NTI) and was related to major climatic variables. Correlation analysis and structure equation modeling approach were used to assess the relationships between phylogenetic relatedness and climatic variables.Important findings Phylogenetic relatedness of angiosperm woody species in the local forest communities is more strongly associated with temperature-related variables than with water-related variables, is positively correlated with mean annual temperature (MAT) and MT, and is related with extreme cold temperature more strongly than with seasonal temperature variability. NTI was related with elevation, MAT and MT more strongly than was NRI. Niche convergence, rather than niche conservatism, has played a primary role in driving community assembly in local forests along the tropical elevational gradient examined. Negative correlations of phylogenetic relatedness with elevation and higher correlations of phylogenetic relatedness with elevation and temperature for NTI than for NRI indicate that evolution of cold tolerance at high elevations in tropical regions primarily occurred at recent (terminal) phylogenetic nodes widely distributed among major clades.  相似文献   

2.
Aims Understanding what drives the variation in species composition and diversity among local communities can provide insights into the mechanisms of community assembly. Because ecological traits are often thought to be phylogenetically conserved, there should be patterns in phylogenetic structure and phylogenetic diversity in local communities along ecological gradients. We investigate potential patterns in angiosperm assemblages along an elevational gradient with a steep ecological gradient in Changbaishan, China.Methods We used 13 angiosperm assemblages in forest plots (32×32 m) distributed along an elevational gradient from 720 to 1900 m above sea level. We used Faith's phylogenetic diversity metric to quantify the phylogenetic alpha diversity of each forest plot, used the net relatedness index to quantify the degree of phylogenetic relatedness among angiosperm species within each forest plot and used a phylogenetic dissimilarity index to quantify phylogenetic beta diversity among forest plots. We related the measures of phylogenetic structure and phylogenetic diversity to environmental (climatic and edaphic) factors.Important findings Our study showed that angiosperm assemblages tended to be more phylogenetically clustered at higher elevations in Changbaishan. This finding is consistent with the prediction of the phylogenetic niche conservatism hypothesis, which highlights the role of niche constraints in governing the phylogenetic structure of assemblages. Our study also showed that woody assemblages differ from herbaceous assemblages in several major aspects. First, phylogenetic clustering dominated in woody assemblages, whereas phylogenetic overdispersion dominated in herbaceous assemblages; second, patterns in phylogenetic relatedness along the elevational and temperature gradients of Changbaishan were stronger for woody assemblages than for herbaceous assemblages; third, environmental variables explained much more variations in phylogenetic relatedness, phylogenetic alpha diversity and phylogenetic beta diversity for woody assemblages than for herbaceous assemblages.  相似文献   

3.
Climate and evolutionary factors (e.g. diversification, time‐for‐speciation, niche conservatism) are both thought to be major drivers of species richness in regional assemblages. However, few studies have simultaneously investigated the relative effects of climate and evolutionary factors on species richness across a broad geographical extent. Here, we assess their relative effects on species richness of angiosperm trees across North America. Species richness of angiosperm trees in 1175 regional assemblages were related to climate and phylogenetic structure using a structural equation modeling (SEM) approach. Climate was quantified based on the mean temperature of the coldest month and mean annual precipitation. Evolutionary factors (time‐for‐speciation vs diversification) were inferred from phylogeny‐based measures of mean root distance, phylogenetic species variability, and net relatedness index. We found that at the continental scale, species richness is correlated with temperature and precipitation with approximately similar strength. In the SEM with net relatedness index and phylogenetic species variability and with all the 1175 quadrats, the total direct effect size of phylogenetic structure on species richness is greater than the total direct effect size of climate on species richness by a factor of 3.7. The specific patterns of phylogenetic structure (i.e. greater phylogenetic distances in more species rich regions) are consistent with the idea that time and niche conservatism drive richness patterns in North American angiosperm trees. We conclude that angiosperm tree species richness in regional assemblages in North America is more strongly related to patterns of phylogenetic relatedness than to climatic variation. The results of the present study support the idea that climatic and evolutionary explanations for richness patterns are not in conflict, and that evolutionary processes explain both the relationship between climate and richness and substantial variation in richness that is independent of climate.  相似文献   

4.
Models applying space-for-time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump-shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation- and latitude-driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion.  相似文献   

5.
Plant clonality, the ability of a plant species to reproduce itself vegetatively through ramets (shoot-root units), occurs in many plant species and is considered to be more frequent in cold or wet environments. However, a deeper understanding on the clonality-climate relationships along large geographic gradients is still scarce. In this study we revealed the clonality-climate relationships along latitudinal gradient of entire China spanning from tropics to temperate zones using clonality data for 4015 vascular plant species in 545 terrestrial communities. Structural equation modeling (SEM) showed that, in general, the preponderance of clonality increased along the latitudinal gradient towards cold, dry or very wet environments. However, the distribution of clonality in China was significantly but only weakly correlated with latitude and four climatic factors (mean annual temperature, temperature seasonality, mean annual precipitation, precipitation seasonality). Clonality of woody and herbaceous species had opposite responses to climatic variables. More precisely, woody clonality showed higher frequency in wet or climatically stable environments, while herbaceous clonality preferred cold, dry or climatically instable environments. Unexplained variation in clonality may be owed to the influences of other environmental conditions and to different clonal strategies and underlying traits adopted by different growth forms and phylogenetic lineages. Therefore, in-depth research in terms of more detailed clonal growth form, phylogeny and additional environmental variables are encouraged to further understand plant clonality response to climatic and/or edaphic conditions.  相似文献   

6.
Climatic zonation drives latitudinal variation in speciation mechanisms   总被引:2,自引:0,他引:2  
Many groups of organisms show greater species richness in the tropics than in the temperate zone, particularly in tropical montane regions. Forty years ago, Janzen suggested that more limited temperature seasonality in the tropics leads to greater climatic zonation and more climatic barriers to organismal dispersal along elevational gradients in the tropics relative to temperate regions. These factors could lead to differences in how species arise in tropical versus temperate regions and possibly contribute to greater tropical diversity. However, no studies have compared the relationships among climate, elevational distribution and speciation in a group inhabiting both tropical and temperate regions. Here, we compare elevational and climatic divergence among 30 sister-species pairs (14 tropical, 16 temperate) within a single family of salamanders (Plethodontidae) that reaches its greatest species richness in montane Mesoamerica. In support of Janzen's hypothesis, we find that sister species are more elevationally and climatically divergent in the tropics than in the temperate zone. This pattern seemingly reflects regional variation in the role of climate in speciation, with niche conservatism predominating in the temperate zone and niche divergence in the tropics. Our study demonstrates how latitudinal differences in elevational climatic zonation may increase opportunities for geographical isolation, speciation and the associated build-up of species diversity in the tropics relative to the temperate zone.  相似文献   

7.
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.  相似文献   

8.
We examined effects of seasonality of climate and dominant life form (evergreen/deciduous, broad-leaf/coniferous) together with energy condition on species diversity, forest structure, forest dynamics, and productivity of forest ecosystems by comparing the patterns of changes in these ecosystem attributes along altitudinal gradients in tropical regions without seasonality and along a latitudinal gradient from tropical to temperate regions in humid East Asia. We used warmth index (temperature sum during growing season, WI) as an index of energy condition common to both altitudinal and latitudinal gradients. There were apparent differences in patterns of changes in the ecosystem attributes in relation to WI among four forest formations that were classified according to dominant life form and climatic zone (tropical/temperate). Many of the ecosystem attributes—Fishers alpha of species-diversity indices, maximum tree height and stem density, productivity [increment rate of aboveground biomass (AGB)], and population and biomass turnover rates—changed sharply with WI in tropical and temperate evergreen broad-leaved forests, but did not change linearly or changed only loosely with WI in temperate deciduous broad-leaved and evergreen coniferous forests. Values of these ecosystem attributes in temperate deciduous broad-leaved and evergreen coniferous forests were higher (stem density was lower) than those in tropical and temperate evergreen broad-leaved forests under colder conditions (WI below 100°C). Present results indicate that seasonality of climate and resultant change in dominant life form work to buffer the effects of energy reduction on ecosystem attributes along latitudinal gradients.  相似文献   

9.
10.
Latitudinal and elevational richness gradients have received much attention from ecologists but there is little consensus on underlying causes. One possible proximate cause is increased levels of species turnover, or β diversity, in the tropics compared to temperate regions. Here, we leverage a large botanical dataset to map taxonomic and phylogenetic β diversity, as mean turnover between neighboring 100 × 100 km cells, across the Americas and determine key climatic drivers. We find taxonomic and tip‐weighted phylogenetic β diversity is higher in the tropics, but that basal‐weighted phylogenetic β diversity is highest in temperate regions. Supporting Janzen's ‘mountain passes’ hypothesis, tropical mountainous regions had higher β diversity than temperate regions for taxonomic and tip‐weighted metrics. The strongest climatic predictors of turnover were average temperature and temperature seasonality. Taken together, these results suggest β diversity is coupled to latitudinal richness gradients and that temperature is a major driver of plant community composition and change.  相似文献   

11.
The latitudinal diversity gradient has been hypothesized to reflect past evolutionary dynamics driven by climatic niche conservation during cladogenesis, i.e. the tropical conservatism hypothesis. Here we show that the species diversity of treefrogs (Hylidae) across the western hemisphere is actually independent of evolutionary niche dynamics. We evaluated three key predictions of the tropical conservatism hypothesis that relate to the relationships between climate, species richness and the phylogenetic structure of regional treefrog faunas across the continental Americas. Species composition was dependent on the inability of some lineages to evolve cold tolerance, but the actual number of species in a region was strongly predicted by precipitation, not temperature. Moreover, phylogenetic structure was independent of precipitation. Thus, species in low-richness areas were no more closely related than species in highly diverse regions. These results provide no support for the tropical conservatism hypothesis. Instead, they show that regional species composition and richness are constrained by different climatic components, demonstrating that global biodiversity gradients can be independent of niche stasis during cladogenesis.  相似文献   

12.

Aim

The ability of predicting which naturalized non-native species are likely to become invasive can help manage and prevent species invasions. The goal of this study is to test whether invasive angiosperm (flowering plant) species are a phylogenetically clustered subset of naturalized species at global, continental and regional scales, and to assess the relationships of phylogenetic relatedness of invasive species with climate condition (temperature and precipitation).

Location

Global.

Time period

Current.

Taxon

Angiosperms (flowering plants).

Methods

The globe is divided into 290 regions, which are grouped into seven biogeographic (continental) regions. Two phylogenetic metrics (net relatedness index and nearest taxon index), which represent different evolutionary depths, are used to quantify phylogenetic relatedness of invasive angiosperms, with respect to different tailor-made species pools. Phylogenetic relatedness of invasive angiosperms is related to climatic variables.

Results

The global assemblage of invasive angiosperm species is a strongly phylogenetically clustered subset of the species of the entire global angiosperm flora. Most invasive angiosperm assemblages are a phylogenetically clustered subset of their respective naturalized species pools, and phylogenetic clustering reflecting shallow evolutionary history is greater than that reflecting deep evolutionary history. In general, the phylogenetic relatedness of invasive species is greater in regions with lower temperature and precipitation across the world.

Main conclusions

The finding that invasive angiosperm assemblages across the globe are, in general, phylogenetically clustered subsets of their respective naturalized species pools has significant implications in biological conservation, particularly in predicting and controlling invasive species based on phylogenetic relatedness among naturalized species.  相似文献   

13.
Aim We compared vegetation patterns at high elevation on a tropical mountain with edaphic properties and position along climate gradients to examine this landscape’s potential sensitivity to climate change. Location Our study covers the cloud forest, the ecotone at the cloud forest’s upper limit, and the alpine grassland, on the north‐east corner of windward Haleakalā, Hawai‘i. The study area brackets the mean trade wind inversion (TWI), encompasses a perpendicular, east–west precipitation gradient and includes multiple edaphic contexts. Methods We collected vegetation structure and composition data in 134 plots from 1900 to 2400 m elevation, stratified east to west. We used classification trees to compare species assemblage groups with spatial (elevation, easting, aspect) and edaphic (substrate age, texture, degree slope) variables derived from a 10‐m digital elevation model and a digital geological map. Results The forest line was physiognomically sharp, and a Shipley–Keddy test showed that species distributional limits were aggregated there. Forest line elevation was not consistent, but dropped nearly 200 m from east to west. Indicator taxa for positions above or below the forest line varied from east to west. Hierarchical clustering identified species assemblage groups with significantly different composition that were distributed across the TWI and/or along east–west climate gradients. Classification trees showed that edaphic properties were not well associated with species assemblage groups, but position along two perpendicular climate gradients was. Compositional turnover was detected along both elevational and east–west gradients. Turnover of the cloud forest’s epiphytic community was particularly pronounced across east–west gradients. Lichen abundance was significantly higher at the drier end of the east–west moisture gradient, and bryophyte abundance was higher at the wetter end. Main conclusions Modern spatial patterns suggest that this landscape will respond to changes in moisture balance through changes in species assemblage and structure, especially at the ecotone. Furthermore, ecotone response to climate change may vary from east to west because of differences in species‐specific constraints or climatic context.  相似文献   

14.
Aim Spatial turnover of species, or beta diversity, varies in relation to geographical distance and environmental conditions, as well as spatial scale. We evaluated the explanatory power of distance, climate and topography on beta diversity of mammalian faunas of North America in relation to latitude. Location North America north of Mexico. Methods The study area was divided into 313 equal‐area quadrats (241 × 241 km). Faunal data for all continental mammals were compiled for these quadrats, which were divided among five latitudinal zones. These zones were comparable in terms of latitudinal and longitudinal span, climatic gradients and elevational gradients. We used the natural logarithm of the Jaccard index (lnJ) to measure species turnover between pairs of quadrats within each latitudinal zone. The slope of lnJ in relation to distance was compared among latitudinal zones. We used partial regression to partition the variance in lnJ into the components uniquely explained by distance and by environmental differences, as well as jointly by distance and environmental differences. Results Mammalian faunas of North America differ more from each other at lower latitudes than at higher latitudes. Regression models of lnJ in relation to distance, climatic difference and topographic difference for each zone demonstrated that these variables have high explanatory power that diminishes with latitude. Beta diversity is higher for zones with higher mean annual temperature, lower seasonality of temperature and greater topographic complexity. For each latitudinal zone, distance and environmental differences explain a greater proportion of the variance in lnJ than distance, climate or topography does separately. Main conclusions The latitudinal gradient in beta diversity of North American mammals corresponds to a macroclimatic gradient of decreasing mean annual temperature and increasing seasonality of temperature from south to north. Most of the variance in spatial turnover is explained by distance and environmental differences jointly rather than distance, climate or topography separately. The high predictive power of geographical distance, climatic conditions and topography on spatial turnover could result from the direct effects of physical limiting factors or from ecological and evolutionary processes that are also influenced by the geographical template.  相似文献   

15.

Question

Global‐scale forest censuses provide an opportunity to understand diversification processes in woody plant communities. Based on the climatic or geographic filtering hypotheses associated with tropical niche conservatism and dispersal limitation, we analysed phylogenetic community structures across a wide range of biomes and evaluated to what extent region‐specific processes have influenced large‐scale diversity patterns of tree species communities across latitude or continent.

Location

Global.

Methods

We generated a data set of species abundances for 21,379 angiosperm woody plants in 843 plots worldwide. We calculated net relatedness index (NRI) for each plot, based on a single global species pool and regional species pools, and phylogenetic β‐diversity (PBD) between plots. Then, we explored the correlations of NRI with climatic and geographic variables, and clarified phylogenetic dissimilarity along geographic and climatic differences. We also compared these patterns for South America, Africa, the Indo‐Pacific, Australia, the Nearctic, Western Palearctic and Eastern Palearctic.

Results

NRI based on a global‐scale species pool was negatively associated with precipitation and positively associated with Quaternary temperature change. PBD was positively associated with geographic distance and precipitation difference between plots across tropical and extratropical biomes. Moreover, phylogenetic dissimilarity was smaller in extratropical regions than in regions including the tropics, although temperate forests of the Eastern Palearctic showed a greater dissimilarity within extratropical regions.

Conclusions

Our findings support predictions of the climatic and geographic filtering hypotheses. Climatic filtering (climatic harshness and paleoclimatic change) relative to tropical niche conservatism played a role in sorting species from the global species pool and shaped the large‐scale diversity patterns, such as the latitudinal gradient observed across continents. Geographic filtering associated with dispersal limitation substantially contributed to regional divergence of tropical/extratropical biomes among continents. Old, long‐standing geographic barriers and recent climatic events differently influenced evolutionary diversification of angiosperm tree communities in tropical and extratropical biomes.  相似文献   

16.
A controversial issue in ecology and conservation is whether community composition is controlled by niche or dispersal assembly. We assessed the importance of climatic factors and geographic gradients on the distribution of orchid bees in a severely-fragmented and species-rich tropical forest region in Brazil. Orchid-bee males were attracted to 17 different scent baits and collected in 15 forest sites. In total we captured 11,081 bees from 40 species. Climatic variables explained twice as much of the observed variation in the bee species data set as did pure spatial variation. However, most of the climatic explained variation was spatially structured, indicating that the species and the climatic data have a similar spatial arrangement. In fact, part of the observed latitudinal changes in community composition appears to be explained by a concomitant gradient in precipitation seasonality. Similarly, reduced temperatures and a more seasonal precipitation may help to explain the relative distinctiveness of the fauna from some of the westernmost sites. The level of similarity among the sampled sites, although highly variable, decayed both as function of the climatic and geographic distances among these sites. The greatest pairwise dissimilarities in the composition of the orchid-bee fauna were observed among sites 200–300 km from each other, since in many case those sites were more dissimilar in terms of climate than those further apart. It is suggested that global warming and consequent altered climatic regimes will influence the distribution patterns of orchid bees in a region already threatened by deforestation and forest fragmentation.  相似文献   

17.
Aims To examine if and how species and phylogenetic diversity change in relation to disturbance, we conducted a review of ecological literature by testing the consistency of the relationship between phylogenetic diversity and disturbance and compared taxonomic groups, type of disturbance and ecosystem/habitat context. We provide a case study of the phylogenetic diversity–disturbance relationship in angiosperm plant communities of a boreal forest region, compared with types of natural and anthropogenic disturbances and plant growth forms.Methods Using a large-scale sampling plot network along a complete (0–100%) anthropogenic disturbance gradient in the boreal biome, we compared the changes of angiosperm plant community structure and composition across plots. We estimated natural disturbance with historical records of major fires. We then calculated phylogenetic diversity indexes and determined species richness in order to compare linear and polynomial trends along disturbance gradients. We also compared the changes of community structure for different types of anthropogenic disturbances and examined how the relationships between species and phylogenetic diversity and disturbance regimes vary among three different life forms (i.e. forbs, graminoids and woody plants).Important findings Phylogenetic diversity was inconsistently related to disturbance in previous studies, regardless of taxon, disturbance type or ecosystem context. In the understudied boreal ecosystem, angiosperm plant communities varied greatly in species richness and phylogenetic diversity along anthropogenic disturbance gradients and among different disturbance types. In general, a quadratic curve described the relationship between species richness and anthropogenic disturbance, with the highest richness at intermediate anthropogenic disturbance levels. However, phylogenetic diversity was not related to disturbance in any consistent manner and species richness was not correlated with phylogenetic diversity. Phylogenetic relatedness was also inconsistent across plant growth forms and different anthropogenic disturbance types. Unlike the inconsistent patterns observed for anthropogenic disturbance, community assembly among localities varying in time since natural disturbance exhibited a distinct signature of phylogenetic relatedness, although those trends varied among plant growth forms.  相似文献   

18.
Understanding biodiversity patterns on islands has long been a central aim in ecology and conservation biology. Island‐specific biogeographical processes play substantial roles in the formation of endemic biota. Here, we examined how climate niche conservatism and geohistorical factors are interactively associated with in situ diversification of Tertiary relict flora in the east Asian continental islands. We generated two novel datasets for species distribution and phylogeny that included all of the known vascular plant species in Japan (5575). Then we tested phylogenetic signal of climatic tolerance, in terms of absolute minimum temperature and water balance, and explored environmental predictors of phylogenetic structure (evolutionary derivedness and clustering) of species assemblages. Although phylogenetic signal of climatic tolerance was significant across the phylogeny of most species, the strength of climatic niche conservatism differed among ferns, gymnosperms, angiosperm trees, and angiosperm herbs. For angiosperm trees, cold temperatures acted as environmental filters that generated phylogenetic derivedness/clustering of species assemblages. For fern and angiosperm herb species, however, phylogenetic properties were not associated with climatic harshness. These contrasting patterns among groups reflected climate niche evolution in vascular plants with different growth forms and traits; for example, diversification of angiosperm trees (but not fern and herb) occurred in response to historical climatic cooling. More importantly, geographical constraints contributed to evolutionary radiation that resulted from isolation by distance from the continent or by elevation. Quaternary climate change was also associated with clade‐specific radiation in refugial habitats. The degree to which geographical, geological, and palaeoclimatic variables explain the phylogenetic structure underscores the importance of isolation‐ and habitat‐stability‐related geohistorical processes in driving in situ diversification despite climatic niche conservatism. We propose that the highly endemic flora of the east Asian islands resulted from the interplay of idiosyncratic regional factors, and ecological and evolutionary processes, such as climate niche assembly and adaptive/nonadaptive radiation.  相似文献   

19.
Aim Elevation and climate ranges across latitude experienced by 21 wide‐ranging mammal species in western North America were summarized to examine two questions: (1) do populations in the northern and southern portions of a species’ range experience different climates or are environments selected to remain similar to climates at the core of ranges; and (2) how do species’ elevational ranges, experienced temperature seasonality and temperature ranges change across latitude? Given the larger effects of climate oscillations in the north vs. the south, a predicted outcome is for species to conserve climate niches across latitude and to show reduced climate and elevation ranges in the north. An alternative outcome is latitudinal niche diversification and increased climate variation in the north. Location Western North America. Methods The questions above were examined using a combination of species occurrence data bases, climate data bases, simple summaries of means and standard deviations and by testing summaries against random distributions across latitude for 21 mammal species from a variety of orders. Results The results showed that: (i) most species conserve their niche strongly or weakly given overall temperature gradients from north to south; (ii) seasonality experienced by species is relatively static until the highest latitudes despite directional trends across the region; and (iii) the elevation range and temperature variation that species experience decreases from south to north. Main conclusions Populations at range edges appear to partition environments to remain closer to temperature values similar to those at the core of the range. In addition, seasonality is not a likely explanatory factor of genetic diversity in latitudinal gradients. The data are instead more consistent with predictions that a combination of higher gene‐flow, increasing environmental instability and decreasing elevation gradients in the north compared to the south may lead to negative correlations between latitude and species’ climate variation. The results corroborate risks faced by northern mammal populations to global climate changes.  相似文献   

20.
Previous research found that phylogenetic clustering increased with disturbance for tropical trees, suggesting that community assembly is mainly influenced by abiotic factors during early succession. Lianas are an important additional component of tropical forests, but their phylogenetic community structure has never been investigated. Unlike tropical trees, liana abundance is often high in disturbed forests and diversity can peak in old secondary forest. Therefore, phylogenetic structure along a disturbance gradient might also differ from tropical tree communities. Here we determined phylogenetic community structure of lianas along a disturbance gradient in a tropical montane forest in China, using the net relatedness index (NRI) from 100 equivalent phylogenies with varying branch length that were constructed using DNA‐barcode sequences. Three additional phylogenetic indices were also considered for comparison. When NRI was used as index phylogenetic clustering of liana communities decreased with decreasing tree basal area, suggesting that liana competitive interactions dominate during early succession, which is in contrast to the pattern reported for trees. Liana communities in mature forests, on the other hand, were phylogenetic clustered, which could be caused by dispersal limitation and/or environmental filtering. The three additional phylogenetic indices identified different, sometimes contradicting predictors of phylogenetic community structure, indicating that caution is needed when generalizing interpretations of studies based on a single phylogenetic community structure index. Our study provides a more nuanced picture of non‐random assembly along disturbance gradients by focusing on a non‐tree forest component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号