首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 970 毫秒
1.
We investigated the occurrence of freezing-induced cavitation in the evergreen desert shrub Larrea tridentata and compared it to co-occurring, winter-deciduous Prosopis velutina. Field measurements indicated that xylem sap in L. tridentata froze at temperatures below c. –5°C, and that this caused no measurable cavitation for minimum temperatures above –7°C. During the same period P. velutina cavitated almost completely. In the laboratory, we cooled stems of L. tridentata to temperatures ranging from –5 to –20°C, held them at temperature for 1 or 12 h, thawed the stems at a constant rate and measured cavitation by the decrease in hydraulic conductivity of stem segments. As observed in the field, freezing exotherms occurred at temperatures between –6.5 and –9°C and as long as temperatures were held above –11°C there was no change in hydraulic conductivity after thawing. However, when stems were cooled to between –11°C and –20°C, stem hydraulic conductivity decreased linearly with minimum temperature. Minimum temperatures between –16 and –20°C were sufficient to completely eliminate hydraulic conductance. Record (>20 year) minimum isotherms in this same range of temperatures corresponded closely with the northern limit of L. tridentata in the Mojave and Sonoran deserts.  相似文献   

2.
The response to freeze-thaw stress was examined for two co-occurring evergreen species, Malosma laurina and Rhus ovata. Laboratory and field experiments on adults and seedlings were made in the spring and winter in 1996 and again on adults in 2003 and 2004. Laboratory and field results indicated that the stem xylem for adults of M. laurina and R. ovata were similarly susceptible to freezing-induced cavitation (percentage loss of conductivity = 92 ± 2.6% for R. ovata and 90 ± 4.2% for M. laurina at ≤ -6°C). In contrast, leaves of M. laurina were more susceptible to freezing injury than leaves of R. ovata. Among seedlings in the field, leaves of M. laurina exhibited freezing injury at -4°C and total shoot mortality at -7.2°C, whereas co-occurring seedlings of R. ovata were uninjured. Surprisingly, R. ovata tolerates high levels of freezing-induced xylem embolism in the field, an apparently rare condition among evergreen plants. Rhus ovata avoids desiccation when xylem embolism is high by exhibiting low minimum leaf conductance compared to M. laurina. These results suggest a link between minimum leaf conductance and stem hydraulics as a mechanism permitting the persistence of an evergreen leaf habit in freezing environments.  相似文献   

3.
Freezing sensitivity of leaves and xylem was examined in four co-occurring Mediterranean oaks (Quercus spp.) grown in a common garden to determine whether freezing responses of leaves and xylem were coordinated and could be predicted by leaf lifespan. Freezing-induced embolism and loss of photosynthetic function were measured after overnight exposure to a range of subzero temperatures in both summer and winter. Both measures were found to be dependent on minimum freezing temperature and were correlated with leaf lifespan and vessel diameter. The dependence of xylem embolism on minimum freezing temperature may result from the decline in water potential with ice temperature that influences the redistribution of water during freezing and leads to an increase in xylem tension. Winter acclimatization had a relatively small effect on the vulnerability to freezing-induced embolism, although leaf photosynthetic function showed a strong acclimatization response, particularly in the two evergreen species. Quercus ilex, the species with the longest leaf lifespan and narrowest vessel diameters, showed the highest freezing tolerance. This helps explain its ability to inhabit a broad range throughout the Mediterranean region. By contrast, the inability of the deciduous oaks to maintain photosynthetic and vascular function throughout the winter indicates a competitive disadvantage that may prevent them from expanding their ranges.  相似文献   

4.
Freeze-thaw events can cause embolism in plant xylem. According to classical theory, gas bubbles are formed during freezing and expand during thawing. Conifers have proved to be very resistant to freeze-thaw induced embolism, because bubbles in tracheids are small and redissolve during thawing. In contrast, increasing embolism rates upon consecutive freeze-thaw events were observed that cannot be explained by the classical mechanism. In this study, embolism formation during freeze-thaw events was analyzed via ultrasonic and Cryo-scanning electron microscope techniques. Twigs of Picea abies L. Karst. were subjected to up to 120 freeze-thaw cycles during which ultrasonic acoustic emissions, xylem temperature, and diameter variations were registered. In addition, the extent and cross-sectional pattern of embolism were analyzed with staining experiments and Cryo-scanning electron microscope observations. Embolism increased with the number of freeze-thaw events in twigs previously dehydrated to a water potential of -2.8 MPa. In these twigs, acoustic emissions were registered, while saturated twigs showed low, and totally dehydrated twigs showed no, acoustic activity. Acoustic emissions were detected only during the freezing process. This means that embolism was formed during freezing, which is in contradiction to the classical theory of freeze-thaw induced embolism. The clustered pattern of embolized tracheids in cross sections indicates that air spread from a dysfunctional tracheid to adjacent functional ones. We hypothesize that the low water potential of the growing ice front led to a decrease of the potential in nearby tracheids. This may result in freezing-induced air seeding.  相似文献   

5.
Previous studies indicate that conifers are vulnerable to cavitation induced by drought but in many cases, not by freezing. Rarely have vulnerability to drought and freezing stress been studied together, even though both influence plant physiology and the abundance and distribution of plants in many regions of the world. We studied vulnerability to drought- and freezing-induced cavitation, along with wood density, conduit reinforcement, tracheid diameter, and hydraulic conductivity, in four Juniperus species that typically occupy different habitats, but uniquely co-occur at the same site in Arizona, AZ. We combined drought with a freeze-thaw cycle to create freezing-induced vulnerability curves. All four species demonstrated greater vulnerability to drought + freezing- than to drought-induced cavitation alone ( P  < 0.0001). Mean tracheid diameter was correlated with vulnerability to drought + freezing-induced cavitation (r = 0.512, P  = 0.01). The vulnerability to cavitation of each species followed expected rankings based on relative moisture within each species' natural distribution. Species with naturally drier distributions showed greater resistance to both drought- and drought + freezing-induced cavitation. Even conifer species with relatively small tracheid diameters can experience xylem embolism after a single freeze-thaw cycle when under drought stress.  相似文献   

6.
Mayr S  Gruber A  Bauer H 《Planta》2003,217(3):436-441
Freezing and thawing lead to xylem embolism when gas bubbles caused by ice formation expand during the thaw process. However, previous experimental studies indicated that conifers are resistant to freezing-induced embolism, unless xylem pressure becomes very negative during the freezing. In this study, we show that conifers experienced freezing-induced embolism when exposed to repeated freeze-thaw cycles and simultaneously to drought. Simulating conditions at the alpine timberline (128 days with freeze-thaw events and thawing rates of up to 9.5 K h(-1) in the xylem of exposed twigs during winter), young trees of Norway spruce [Picea abies (L.) Karst.] and stone pine (Pinus cembra L.) were exposed to 50 and 100 freeze-thaw cycles. This treatment caused a significant increase in embolism rates in drought-stressed samples. Upon 100 freeze-thaw cycles, vulnerability thresholds (50% loss of conductivity) were shifted 1.8 MPa (Norway spruce) and 0.8 MPa (stone pine) towards less negative water potentials. The results demonstrate that freeze-thaw cycles are a possible reason for winter-embolism in conifers observed in several field studies. Freezing-induced embolism may contribute to the altitudinal limits of conifers.  相似文献   

7.
Water transport from the roots to leaves in chaparral shrubs of California occurs through xylem vessels and tracheids. The formation of gas bubbles in xylem can block water transport (gas embolism), leading to shoot dieback. Two environmental factors that cause gas embolism formation in xylem conduits are drought and freezing air temperatures. We compared the differential vulnerabilities of Rhus laurina and Ceanothus megacarpus, co-dominant shrub species in the coastal regions of the Santa Monica Mountains of southern California, to both water stress-induced and freezing-induced embolism of their xylem. Rhus laurina has relatively large xylem vessel diameters, a deep root system, and a large basal burl from which it vigorously resprouts after wildfire or freezing injury. In contrast, Ceanothus megacarpus has small-diameter vessels, a shallow root system, no basal burl and is a non-sprouter after shoot removal by wildfire. We found that R. laurina became 50% embolized at a water stress of –3 MPa and 100% embolized by a freeze–thaw cycle at all hydration levels. In contrast, C. megacarpus became 50% embolized at a water stress of –9 MPa and 100% embolized by freeze–thaw events only at water potentials lower than –3 MPa. Reducing thaw rates from 0·8 °C min?1 to 0·08 °C min?1 (the normal thaw rate measured in situ) had no effect on embolism formation in R. laurina but significantly reduced embolism occurrence in well-hydrated C. megacarpus (embolism reduced from 74 to 35%). These results were consistent with the theory of gas bubble formation and dissolution in xylem sap. They also agree with field observations of differential shoot dieback in these two species after a natural freeze–thaw event in the Santa Monica Mountains.  相似文献   

8.
MethodsCO2 efflux measurements were conducted during freezing experiments for saplings of three Scots pine (Pinus sylvestris) and three Norway spruce (Picea abies) trees under laboratory conditions, and the magnitudes of the freezing-related bursts of CO2 released from the stems were analysed using a previously published mechanistic model of CO2 production, storage, diffusion and efflux from a tree stem. The freezing-related bursts of CO2 released from a mature Scots pine tree growing in field conditions were also measured and analysed.ConclusionsAll gases dissolved in the xylem sap are not trapped within the ice in the stem during freezing, as has previously been assumed, thus adding a new dimension to the understanding of winter embolism formation. The conduit water volume not only determines the volume of bubbles formed during freezing, but also the efficiency of gas efflux out of the conduit during the freezing process.  相似文献   

9.
Diurnal changes in percentage loss of hydraulic conductivity (PLC), with recorded values being higher at midday than on the following morning, have been interpreted as evidence for the occurrence of cycles of xylem conduits' embolism and repair. Recent reports have suggested that diurnal PLC changes might arise as a consequence of an experimental artefact, that is, air entry into xylem conduits upon cutting stems, even if under water, while under substantial tension generated by transpiration. Rehydration procedures prior to hydraulic measurements have been recommended to avoid this artefact. In the present study, we show that xylem rehydration prior to hydraulic measurements might favour xylem refilling and embolism repair, thus leading to PLC values erroneously lower than those actually experienced by transpiring plants. When xylem tension relaxation procedures were performed on stems where refilling mechanisms had been previously inhibited by mechanical (girdling) or chemical (orthovanadate) treatment, PLC values measured in stems cut under native tension were the same as those measured after sample rehydration/relaxation. Our data call for renewed attention to the procedures of sample collection in the field and transport to the laboratory, and suggest that girdling might be a recommendable treatment prior to sample collection for PLC measurements.  相似文献   

10.
Ewers FW  Lawson MC  Bowen TJ  Davis SD 《Oecologia》2003,136(2):213-219
Freeze/thaw stress was examined in chaparral shrubs of the genus Ceanothus to determine the interactive effects of freezing and drought and to consider which is the more vulnerable component, the living leaves (symplast) or the non-living water transport system (apoplast). We hypothesized that where Ceanothus species co-occurred, the more inland species C. crassifolius would be more tolerant of low temperatures than the coastal species C. spinosus, both in terms of leaf survival (LT(50), or the temperature at which there is 50% loss of function or viability) and in terms of resistance to freezing-induced embolism (measurements of percent loss hydraulic conductivity due to embolism following freeze/thaw). Cooling experiments on 2 m long winter-acclimated shoots resulted in LT(50) values of about -10 degrees C for C. spinosus versus -18 degrees C for C. crassifolius. Freeze-thaw cycles resulted in no change in embolism when the plants were well hydrated (-0.7 to -2.0 MPa). However, when plants were dehydrated to -5.0 MPa, C. spinosus became 96% embolized with freeze/thaw, versus only 61% embolism for C. crassifolius. Stems of C. crassifolius became 90% and 97% embolized at -6.6 and -8.0 MPa, respectively, meaning that even in this species, stems could be more vulnerable than leaves under conditions of extreme water stress combined with freeze/thaw events. The dominance of C. crassifolius at colder sites and the restriction of C. spinosus to warmer sites are consistent with both the relative tolerance of their symplasts to low temperatures and the relative tolerance of their apoplasts to freeze events in combination with drought stress.  相似文献   

11.
Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub‐zero temperatures. Seasonal leaf water relations, non‐structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to ?13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub‐zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold‐acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.  相似文献   

12.
Seasonal xylem (wood) conductivity and embolism (air blockage) patterns were monitored in roots vs. stems of two clonal ring-porous tree species, Sassafras albidum and Rhus typhina, throughout 1996 and 1997. Stems of both species were 100% embolized in the early spring and became conductive by late June following leaf expansion and maturation of new earlywood vessels. Dyes indicated the stem conduction was restricted almost exclusively to the current year's growth ring. Stems became totally embolized again by early October, before the first freezing temperatures. In contrast, woody roots of both species maintained low embolism values, many conductive growth rings, and high conductivity values regardless of the season. No positive root pressures were detected in either species. The mean frost depth (204 ± 11 mm) was deeper than all sampled roots of Rhus and 47% of sampled roots of Sassafras. The roots that had been in frozen soil either avoided embolism altogether or they were able to reverse embolism by a mechanism other than positive root pressures.  相似文献   

13.
 以同处于干旱区的塔里木河下游(铁干里克)和黑河下游(乌兰图格)断面为研究区, 比较了荒漠河岸林主要建群种胡杨(Populus euphratica)、柽柳(Tamarix spp.)、疏叶骆驼刺(Alhagi sparsifolia)和花花柴(Karelinia caspia)在长期遭受不同干旱胁迫下的根、枝条木质部导水力和栓塞化程度的变化特征, 并分析了木质部导水对干旱胁迫的响应及适应策略。结果表明: 1) 黑河下游荒漠河岸林植物的导水能力显著高于塔里木河下游, 其中柽柳、胡杨、疏叶骆驼刺和花花柴根木质部的初始比导率(Ks0)分别高11.97、6.74、7.10和3.73倍, 枝条的Ks0分别高9.48、3.65、2.07和1.88倍, 地下水埋深导致的干旱胁迫程度不同是诱发荒漠植物导水能力差异的根本原因; 2)柽柳耐干旱能力最强, 适应范围较宽, 而花花柴、疏叶骆驼刺的耐旱性相对较弱, 适生范围较窄, 这可能与植物的根系分布有关; 3)干旱胁迫较轻时, 枝条木质部是荒漠河岸林植物水分传输的主要阻力部位, 干旱胁迫严重时, 根木质部是限制植株水流的最大阻碍部位; 4)荒漠河岸林植物主要通过调节枝条木质部的水流阻力来适应干旱胁迫, 且其适应策略与干旱胁迫程度有关, 干旱胁迫轻时, 植物通过限制枝条木质部水流来协调整株植物的均匀生长; 干旱胁迫严重时, 植物通过牺牲劣势枝条、增强优势枝条水流来提高植株整体生存的机会。  相似文献   

14.
In order to predict optimal cooling rates for cryopreservation of cells, the cell-specific membrane hydraulic permeability and corresponding activation energy for water transport need to be experimentally determined. These parameters should preferably be determined at subzero temperatures in the presence of ice. There is, however, a lack of methods to study membrane properties of cells in the presence of ice. We have used Fourier transform infrared spectroscopy to study freezing-induced membrane dehydration of mouse embryonic fibroblast (3T3) cells and derived the subzero membrane hydraulic permeability and the activation energy for water transport from these data. Coulter counter measurements were used to determine the suprazero membrane hydraulic permeability parameters from cellular volume changes of cells exposed to osmotic stress. The activation energy for water transport in the ice phase is about three fold greater compared to that at suprazero temperatures. The membrane hydraulic permeability at 0 °C that was extrapolated from suprazero measurements is about five fold greater compared to that extrapolated from subzero measurements. This difference is likely due to a freezing-induced dehydration of the bound water around the phospholipid head groups. Using Fourier transform infrared spectroscopy, two distinct water transport processes, that of free and membrane bound water, can be identified during freezing with distinct activation energies. Dimethylsulfoxide, a widely used cryoprotective agent, did not prevent freezing-induced membrane dehydration but decreased the activation energy for water transport.  相似文献   

15.
As soil and plant water status decline, decreases in hydraulic conductance can limit a plant's ability to maintain gas exchange. We investigated hydraulic limitations for Artemisia tridentata during summer drought. Water use was quantified by measurements of soil and plant water potential ( Ψ ), transpiration and leaf area. Hydraulic transport capacity was quantified by vulnerability to water stress-induced cavitation for root and stem xylem, and moisture release characteristics for soil. These data were used to predict the maximum possible steady-state transpiration rate ( E crit) and minimum leaf xylem pressure ( Ψ crit). Transpiration and leaf area declined by ~ 80 and 50%, respectively, as soil Ψ decreased to –2·6 MPa during drought. Leaf-specific hydraulic conductance also decreased by 70%, with most of the decline predicted in the rhizosphere and root system. Root conductance was projected to be the most limiting, decreasing to zero to cause hydraulic failure if E crit was exceeded. The basis for this prediction was that roots were more vulnerable to xylem cavitation than stems (99% cavitation at –4·0 versus –7·8 MPa, respectively). The decline in water use during drought was necessary to maintain E and Ψ within the limits defined by E crit and Ψ crit.  相似文献   

16.
Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occurring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (psi root) was about -2.6 MPa, and recovered to 25-40% loss of conductivity in the morning when psi root was about -1.0 MPa. Daily variation in psi root decreased, and root xylem vulnerability and capacitance increased with rooting depth. However, all species experienced seasonal minimum psi root close to complete hydraulic failure independent of their rooting depth or resistance to embolism. Predawn psi root was lower than psi soil when psi soil was relatively high (> -0.7 MPa) but became less negative than psi soil, later in the dry season, consistent with a transition from a disequilibrium between plant and soil psi induced by nocturnal transpiration to one induced by hydraulic redistribution of water from deeper soil layers. Shallow longitudinal root incisions external to the xylem prevented reversal of embolism overnight, suggesting that root mechanical integrity was necessary for recovery, consistent with the hypothesis that if embolism is a function of tension, refilling may be a function of internal pressure imbalances. All species shared a common relationship in which maximum daily stomatal conductance declined linearly with increasing afternoon loss of root conductivity over the course of the dry season. Daily embolism and refilling in roots is a common occurrence and thus may be an inherent component of a hydraulic signaling mechanism enabling stomata to maintain the integrity of the hydraulic pipeline in long-lived structures such as stems.  相似文献   

17.
Quercus ilex L. growing in the southern Mediterranean Basin region is exposed to xylem embolism induced by both winter freezing and summer drought. The distribution of the species in Sicily could be explained in terms of the different vulnerability to embolism of its xylem conduits. Naturally occurring climatic conditions were simulated by: (1) maintaining plants for 3h at ambient temperatures of 0, -1.5, -2.5, -5.0 and -11°C; and (2) allowing plants to dry out to ratios of their minimum diurnal leaf water potentials (Ψ1) to that at the turgor loss point (Ψtlp) of 0.6, 0.9, 1.05, 1.20 and 1.33. The loss of hydraulic conductivity of one-year-old twigs reached 40% at -1.5°C and at Ψ1tlP= 1.05. Recovery from these strains was almost complete 24 h after the release of thermal stress or after one irrigation, respectively. More severe stresses reduced recovery consistently. The percentages of xylem conduits embolized following application of the two stresses, were positively related to xylem conduit diameter. The capability of the xylem conduits to recover from stress was positively related to the conduit diameter in plants subjected to summer drought, but not in the plants subjected to winter freezing stress. The ecological significance of the different vulnerabilities to embolism of xylem conduits under naturally occurring climatic conditions is discussed.  相似文献   

18.
Among woody plants, grapevines are often described as highly vulnerable to water‐stress induced cavitation with emboli forming at slight tensions. However, we found native embolism never exceeded 30% despite low xylem water potentials (Ψx) for stems of field grown vines. The discrepancy between native embolism measurements and those of previous reports led us to assess vulnerability curve generation using four separate methods and alterations (i.e. segment length and with/without flushing to remove embolism prior to measurement) of each. Centrifuge, dehydration and air‐injection methods, which rely on measurement of percentage loss of hydraulic conductivity (PLC) in detached stems, were compared against non‐invasive monitoring of xylem cavitation with nuclear magnetic resonance (NMR) imaging. Short segment air‐injection and flushed centrifuge stems reached >90 PLC at Ψx of‐0.5 and ?1.5 MPa, respectively, whereas dehydration and long‐segment air‐injection measurements indicated no significant embolism at Ψx > ?2.0 MPa. Observations from NMR agreed with the dehydration and long segment air‐injection methods, showing the majority of vessels were still water‐filled at Ψx > ?1.5 MPa. Our findings show V. vinifera stems are far less vulnerable to water stress‐induced cavitation than previously reported, and dehydration and long segment air‐injection techniques are more appropriate for long‐vesseled species and organs.  相似文献   

19.
Cold hardiness and deep supercooling in xylem of shagbark hickory   总被引:18,自引:11,他引:7       下载免费PDF全文
Differential thermal analysis, differential scanning calorimetry, pulsed nuclear magnetic resonance spectroscopy, and low temperature microscopy are utilized to investigate low temperature freezing points or exotherms which occur near −40 C in the xylem of cold-acclimated shagbark hickory (Carya ovata L.). Experiments using these methods demonstrate that the low temperature exotherm results from the freezing of cellular water in a manner predicted for supercooled dilute aqueous solutions. Heat release on freezing, nuclear magnetic resonance relaxation times, and freezing and thawing curves for hickory twigs all point to a supercooled fraction in the xylem at subfreezing temperatures. Calorimetric and low temperature microscopic analyses indicate that freezing occurs intracellularly in the xylem ray parenchyma. The supercooled fraction is found to be extremely stable, even at temperatures only slightly above the homogeneous nucleation temperature for water (−38 C). Xylem water is also observed to be resistant to dehydration when exposed to 80% relative humidity at 20 C. D2O exchange experiments find that only a weak kinetic barrier to water transport exists in the xylem rays of shagbark hickory.  相似文献   

20.
Drought and freezing are both known to limit desert plant distributions, but the interaction of these stressors is poorly understood. Drought may increase freezing tolerance in leaves while decreasing it in the xylem, potentially creating a mismatch between water supply and demand. To test this hypothesis, we subjected Larrea tridentata juveniles grown in a greenhouse under well‐watered or drought conditions to minimum temperatures ranging from ?8 to ?24 °C. We measured survival, leaf retention, gas exchange, cell death, freezing point depression and leaf‐specific xylem hydraulic conductance (kl). Drought‐exposed plants exhibited smaller decreases in gas exchange after exposure to ?8 °C compared to well‐watered plants. Drought also conferred a significant positive effect on leaf, xylem and whole‐plant function following exposure to ?15 °C; drought‐exposed plants exhibited less cell death, greater leaf retention, higher kl and higher rates of gas exchange than well‐watered plants. Both drought‐exposed and well‐watered plants experienced 100% mortality following exposure to ?24 °C. By documenting the combined effects of drought and freezing stress, our data provide insight into the mechanisms determining plant survival and performance following freezing and the potential for shifts in L. tridentata abundance and range in the face of changing temperature and precipitation regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号