首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The effects of endurance training and acute exhaustive exercise on plasma levels of three superoxide dismutase (SOD) isoenzymes and the ability of superoxide generation in neutrophils were studied. Eighteen healthy male students, aged 17–22 years, who volunteered for this study, underwent three months of endurance training in swimming or running. Before and after the training course, they performed acute exercise and blood samples were collected before and after this exercise. The endurance training significantly increased maximal oxygen uptake (V˙O2max) in all subjects. Neither the endurance training nor the acute exercise affected the plasma CuZn-SOD level. Acute exercise after the training, but not before the training, increased both the plasma Mn-SOD and extracellular SOD (EC-SOD) levels by 33.6 and 33.5%, respectively. The training decreased the EC-SOD level at rest by 22.2%. Acute exercise after the training, but not before the training, increased the plasma lipid peroxide level, suggesting higher oxidative stress in trained subjects during exhaustive exercise. The ability of neutrophils to generate superoxide was increased by the acute exercise, but induction of the superoxide was suppressed after training. These results indicate that EC-SOD levels were changed in a different manner from the CuZn-SOD and Mn-SOD: it was decreased by training but was increased by acute exercise, suggesting that endurance training increases the reserve of EC-SOD in tissues. The results also suggest the possibility of plasma EC-SOD assay as a new index of endurance training.  相似文献   

2.
The purpose of the present study was to investigate the effects of swimming training on the changes in three superoxide dismutase (SOD) isoenzymes in mice. The trained mice underwent a 6-wk swimming program (1 h/day, 5 days/wk) in water at 35-36 degrees C. Immunoreactive extracellular SOD (EC-SOD), copper- and zinc-containing SOD (CuZn-SOD), and manganese-containing SOD (Mn-SOD) contents and their mRNA abundance were determined in serum, heart, lung, liver, kidney, and gastrocnemius muscle. EC-SOD content in liver and kidney was significantly increased with training. After training, CuZn-SOD content rose significantly only in kidney but decreased significantly in heart, lung, and liver. Mn-SOD content showed a significant increase in lung, kidney, and skeletal muscle but a significant decrease in liver. In most tissues, however, the changes in SOD isoenzyme contents were not concomitant with those in their mRNA levels. The results obtained thus suggest that, except for kidney, the responses in mouse tissues of three SOD isoenzymes (protein levels and mRNA abundance) to swimming training are different and that kidney may be one of the most sensitive organs to adapt to oxidative stress during physical training, although the mechanism remains vague.  相似文献   

3.
This study investigates the role of extracellular SOD (EC-SOD), the major extracellular antioxidant enzyme, in skeletal muscle ischemia and reperfusion (I/R) injury. Pedicled cremaster muscle flaps from homozygous EC-SOD knockout (EC-SOD-/-) and wild-type (WT) mice were subjected to 4.5-h ischemia and 90-min reperfusion followed by functional and molecular analyses. Our results revealed that EC-SOD-/- mice showed significantly profound I/R injury compared with WT littermates. In particular, there was a delayed and incomplete recovery of arterial spasm and blood flow during reperfusion, and more severe acute inflammatory reaction and muscle damage were noted in EC-SOD-/- mice. After 90-min reperfusion, intracellular SOD [copper- and zinc-containing SOD (CuZn-SOD) and manganese-containing (Mn-SOD)] mRNA levels decreased similarly in both groups. EC-SOD mRNA levels increased in WT mice, whereas EC-SOD mRNA was undetectable, as expected, in EC-SOD-/- mice. In both groups of animals, CuZn-SOD protein levels decreased and Mn-SOD protein levels remained unchanged. EC-SOD protein levels decreased in WT mice. Histological analysis showed diffuse edema and inflammation around muscle fibers, which was more pronounced in EC-SOD-/- mice. In conclusion, our data suggest that EC-SOD plays an important role in the protection from skeletal muscle I/R injury caused by excessive generation of reactive oxygen species.  相似文献   

4.
Mice lacking the secreted extracellular superoxide dismutase (EC-SOD) or the cytosolic copper- and zinc-containing SOD (CuZn-SOD) show relatively mild phenotypes. To explore the possibility that the isoenzymes have partly overlapping functions, single and double knockout mice were examined. The absence of EC-SOD was found to be without effect on the lifespan of mice, and the reduced lifespan of CuZn-SOD knockouts was not further shortened by EC-SOD deficiency. The urinary excretion of isoprostanes was increased in CuZn-SOD knockout mice, and plasma thiobarbituric acid-reactive substances levels were elevated in EC-SOD knockout mice. These oxidant stress markers showed potentiated increases in the absence of both isoenzymes. Other alterations were mainly found in CuZn-SOD knockout mice, such as halved glutathione peroxidase activity in the tissues examined and increased glutathione and iron in the liver. There were no changes in tissue content of the alternative superoxide scavenger ascorbate, but there was a 25% reduction in ascorbate in blood plasma in mice lacking CuZn-SOD. No increase was found in the urinary excretion of the terminal metabolites of NO, nitrite, and nitrate in any of the genotypes. In conclusion, apart from the increases in the global urinary and plasma oxidant stress markers, our phenotype studies revealed no other evidence that the copper- and zinc-containing SOD isoenzymes have overlapping roles.  相似文献   

5.
Yen CC  Lai YW  Chen HL  Lai CW  Lin CY  Chen W  Kuan YP  Hsu WH  Chen CM 《PloS one》2011,6(10):e26870
An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extracellular superoxide dismutase (EC-SOD) to protect the lungs from hyperoxic injury. Recombinant human EC-SOD (rhEC-SOD) was produced from a synthetic cassette constructed in the methylotrophic yeast Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2>95%) to induce lung injury. The therapeutic effects of EC-SOD and copper-zinc SOD (CuZn-SOD) via an aerosol delivery system for lung injury and systemic oxidative stress at 24, 48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were significantly decreased on day 2 (P<0.01) but the marker in the liver increased abruptly after day 3 of hyperoxia when the mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%, which was significantly higher than that of the control group (57.1%), albumin treated group (33.3%), and CuZn-SOD treated group (75%). The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure, including acute respiratory distress syndrome (ARDS).  相似文献   

6.
7.
This study was designed to determine whether endurance training would influence the production of lipid peroxidation (LI-POX) by-products as indicated by malondialdehyde (MDA) at rest and after an acute exercise run. Additionally, the scavenger enzymes catalase (CAT) and superoxide dismutase (SOD) were examined to determine whether changes in LIPOX are associated with alterations in enzyme activity both at rest and after exercise. Male Sprague-Dawley rats (n = 32) were randomly assigned to either trained or sedentary groups and were killed either at rest or after 20 min of treadmill running. The training program increased oxidative capacity 64% in leg muscle. After exercise, the sedentary group demonstrated increased LIPOX levels in liver and white skeletal muscle, whereas the endurance-trained group did not show increases in LIPOX after exercise. CAT activity was higher in both red and white muscle after exercise in the trained animals. Total SOD activity was unaffected by either acute or chronic exercise. These data suggest that endurance training can result in a reduction in LIPOX levels as indicated by MDA during moderate-intensity exercise. It is possible that activation of the enzyme catalase and the increase in respiratory capacity were contributory factors responsible for regulating LIPOX after training during exercise.  相似文献   

8.
Previously, we have demonstrated that increased superoxide generation plays a role in the nitric oxide (NO)-mediated inhibition of endothelial NO synthase (NOS III) in endothelial cells (ECs). In this study we demonstrate that the source of the superoxide is likely due to both NADPH oxidase and NOS III itself. Further, this increase appears to be linked to the activation of PKC, as PMA could mimic the increase and PKC inhibition ameliorate the increase. To further investigate this phenomenon we determined the effect of overexpression of copper-zinc superoxide dismutase (CuZn-SOD) and Manganese-SOD (Mn-SOD) on the inhibitory effects of NO. Using adenoviral infection we demonstrated that SOD activity was increased and superoxide levels decreased, in both CuZn-SOD and Mn-SOD overexpressing cells compared to cells infected with an adenovirus expressing bacterial beta-galactosidase protein. However, only the CuZn-SOD overexpression reduced the NO-mediated inhibition of NOS III. In addition, the level of NO-induced peroxynitrite generation and nitrated NOS III protein were reduced only in the CuZn-SOD overexpressing cells. In conclusion, our results indicate that superoxide and peroxynitrite are involved in the inhibition of NOS III by NO, and that the scavenging of superoxide may be necessary to prevent NOS III inhibition during treatments that involve inhaled NO or NO donors.  相似文献   

9.
The current study examines the contribution of mitochondria-derived reactive oxygen species (ROS) in tert-butyl-hydroperoxide (TBH)-induced apoptotic signaling using clones of undifferentiated pheochromocytoma (PC-12) cells that stably overexpress the human mitochondrial or cytoplasmic forms of superoxide dismutase (SOD) (viz. Mn-SOD or CuZn-SOD, respectively). Exposure of wild type cells to TBH caused an early generation of ROS (30 min) that resulted in cell apoptosis at 24 h. These responses were attenuated with N-acetylcysteine pretreatment; however, N-acetylcysteine was ineffective in cytoprotection when added after TBH-induced ROS formation. Stable overexpression of SOD isoforms caused a 2- and 3.5-fold elevation in CuZn-SOD and Mn-SOD activities in the cytoplasm and mitochondria, respectively, and 3-fold increases in cellular GSH content. Accordingly, the stable overexpression of Mn-SOD attenuated TBH-induced mitochondrial ROS generation and cell apoptosis. Whereas transient Mn-SOD expression similarly prevented PC-12 apoptosis, this was associated with increases in SOD activity but not GSH, indicating that cytoprotection by Mn-SOD overexpression is related to mitochondrial ROS elimination and not due to increases in cellular GSH content per se. Stable or transient CuZn-SOD overexpression exacerbated cell apoptosis in conjunction with accelerated caspase-3 activation, regardless of cell GSH levels. Collectively, our results support a role for mitochondrial ROS in TBH-induced PC-12 apoptosis that is attenuated by Mn-SOD overexpression and is independent of cellular GSH levels per se.  相似文献   

10.
本实验分别在大鼠衰竭跑后即刻、0.5、1、3及24h同时检测了血清睾酮(T)、黄体生成素、睾丸组织脂质过氧化物丙二醛和超氧化物歧化酶。结果表明,大鼠衰竭跑后恢复30min时,伴随着睾丸组织丙二醛含量的明显升高及超氧化物歧化酶活性的显著降低,血清T水平也明显降低。提示,长时间衰竭跑后血清T浓度的降低很可能与缺血-再灌引起睾丸组织氧自由基剧增及脂质过氧化损伤,从而降低了酶的活性和抑制了T的合成有关。氧自由基清除剂能减轻和预防该损伤,并能有效地防止运动后血清T的降低。  相似文献   

11.
We investigated whether 8-week treadmill training strengthens antioxidant enzymes and decreases lipid peroxidation in rat heart. The effects of acute exhaustive exercise were also investigated. Male rats (Rattus norvegicus, Sprague-Dawley strain) were divided into trained and untrained groups. Both groups were further divided equally into two groups where the rats were studied at rest and immediately after exhaustive exercise. Endurance training consisted of treadmill running 1.5 h day(-1), 5 days week(-1) for 8 weeks. For acute exhaustive exercise, graded treadmill running was conducted. Malondialdehyde level in heart tissue was not affected by acute exhaustive exercise in untrained and trained rats. The activities of glutathione peroxidase and glutathione reductase enzymes decreased by both acute exercise and training. Glutathione S-transferase and catalase activities were not affected. Total and non-enzymatic superoxide scavenger activities were not affected either. Superoxide dismutase activity decreased by acute exercise in untrained rats; however, this decrease was not observed in trained rats. Our results suggested that rat heart has sufficient antioxidant enzyme capacity to cope with exercise-induced oxidative stress, and adaptive changes in antioxidant enzymes due to endurance training are limited.  相似文献   

12.
Oxidative stress results in deleterious cell function in pathologies associated with inflammation. Here, we investigated the generation of superoxide anion as well as the anti-oxidant defense systems related to the isoforms of superoxide dismutases (SOD) in cystic fibrosis (CF) cells. Pro-apoptotic agents induced apoptosis in CF but not in control cells that was reduced by treatment with SOD mimetic. These effects were associated with increased superoxide anion production, sensitive to the inhibition of IκB-α phosphorylation, in pancreatic but not tracheal CF cells, and reduced upon inhibition of either mitochondrial complex I or NADPH oxidase. CF cells exhibited reduced expression, but not activity, of both Mn-SOD and Cu/Zn-SOD when compared to control cells. Although, expression of EC-SOD was similar in normal and CF cells, its activity was reduced in CF cells. We provide evidence that high levels of oxidative stress are associated with increased apoptosis in CFTR-mutated cells, the sources being different depending on the cell type. These observations underscore a reduced anti-oxidant defense mechanism, at least in part, via diminished EC-SOD activity and regulation of Cu/Zn-SOD and Mn-SOD expressions. These data point to new therapeutic possibilities in targeting anti-oxidant pathways to reduce oxidative stress and apoptosis in CF cells.  相似文献   

13.
Vitamin C and E supplementation has been shown to attenuate the acute exercise-induced increase in plasma interleukin-6 (IL-6) concentration. Here, we studied the effect of antioxidant vitamins on the regulation of IL-6 expression in muscle and the circulation in response to acute exercise before and after high-intensity endurance exercise training. Twenty-one young healthy men were allocated into either a vitamin (VT; vitamin C and E, n = 11) or a placebo (PL, n = 10) group. A 1-h acute bicycling exercise trial at 65% of maximal power output was performed before and after 12 wk of progressive endurance exercise training. In response to training, the acute exercise-induced IL-6 response was attenuated in PL (P < 0.02), but not in VT (P = 0.82). However, no clear difference between groups was observed (group × training: P = 0.13). Endurance exercise training also attenuated the acute exercise-induced increase in muscle-IL-6 mRNA in both groups. Oxidative stress, assessed by plasma protein carbonyls concentration, was overall higher in the VT compared with the PL group (group effect: P < 0.005). This was accompanied by a general increase in skeletal muscle mRNA expression of antioxidative enzymes, including catalase, copper-zinc superoxide dismutase, and glutathione peroxidase 1 mRNA expression in the VT group. However, skeletal muscle protein content of catalase, copper-zinc superoxide dismutase, or glutathione peroxidase 1 was not affected by training or supplementation. In conclusion, our results indicate that, although vitamin C and E supplementation may attenuate exercise-induced increases in plasma IL-6 there is no clear additive effect when combined with endurance training.  相似文献   

14.
The influence of cytokines on extracellular superoxide dismutase (EC-SOD) expression by human dermal fibroblasts was investigated. The expression was markedly stimulated by interferon-gamma (IFN-gamma), was varying between fibroblast lines stimulated or depressed by interleukin-1 alpha (IL-1 alpha), was intermediately depressed by tumor necrosis factor-alpha (TNF-alpha), and markedly depressed by transforming growth factor-beta (TGF-beta). TNF-alpha, however, enhanced the stimulation by a high dose of IFN-gamma, whereas TGF-beta markedly depressed the stimulations given by IFN-gamma and IL-1 alpha. The ratio between the maximal stimulation and depression observed was around 30-fold. The responses were generally slow and developed over periods of several days. There were no effects of IFN-alpha, IL-2, IL-3, IL-4, IL-6, IL-8, granulocyte-macrophage colony-stimulating factor, human growth hormone, Escherichia coli lipopolysaccharide, leukotriene B4, prostaglandin E2, formylmethionylleucylphenylalanine, platelet-activating factor, and indomethacin. The cytokines influencing the EC-SOD expression are also known to influence superoxide production by leukocytes and other cell types, and the EC-SOD response pattern is roughly compatible with the notion that its function is to protect cells against extracellular superoxide radicals. The results show that EC-SOD is a participant in the complex inflammatory response orchestrated by cytokines. The CuZn-SOD activity of the fibroblasts was not influenced by any of the cytokines, whereas the Mn-SOD activity was depressed by TGF-beta. TNF-alpha, IL-1 alpha, and IFN-gamma stimulated the Mn-SOD activity, as previously known, and these responses were reduced by TGF-beta. The different responses of the three SOD isoenzymes illustrate their different physiological roles.  相似文献   

15.
Oxidative damage is a major cause of lung injury during systemic inflammatory response syndrome. In this study, the expression of an antioxidant enzyme, extracellular superoxide dismutase (EC-SOD), and its protective role against pulmonary oxidative damage were investigated using mouse models of systemic inflammation. Intraperitoneal injection with bacterial endotoxin lipopolysaccharides (LPS; 20 mg/kg) caused oxidative damage in lungs as assessed by increased tyrosine nitration in proteins. LPS administration also resulted in a rapid and significant loss of more than 80% of pulmonary EC-SOD in a time- and dose-dependent manner, but other types of SODs, cytoplasmic CuZn-SOD and mitochondrial Mn-SOD, were not affected. EC-SOD protein is most abundant in lungs but also present at high levels in other tissues such as heart and white fat; however, the LPS-mediated decrease in this enzyme was most apparent in the lungs. Intravenous injection of mice with tumor necrosis factor alpha (10 microg per mouse) also caused a 60% decrease in EC-SOD in the lungs, suggesting that the EC-SOD down-regulation is mediated by this LPS-inducible inflammatory cytokine. A protective role for EC-SOD against LPS-mediated systemic inflammation was shown by an increased survival rate (75% vs 29% in 5 days) and decreased pulmonary oxidative damage in EC-SOD transgenic mice that overexpress the human EC-SOD gene. These results demonstrate that the inflammation-mediated EC-SOD down-regulation has a major pathophysiological impact during the systemic inflammatory response syndrome.  相似文献   

16.
Extracellular superoxide dismutase (EC-SOD) is the major SOD isoenzyme in extracellular fluids, but occurs also in tissues. The sites and characteristics of the synthesis of the enzyme are unknown. The occurrence of EC-SOD in cultures of a large panel of human cell lines was assayed by means of an e.l.i.s.a. Unlike the situation for the intracellular isoenzymes CuZn-SOD and Mn-SOD, expression of EC-SOD occurs in only a few cell types. None of the ten investigated suspension-growing cell lines produced EC-SOD. Among normal diploid anchorage-dependent cell lines, expression was found in all 25 investigated fibroblast cell lines, in the two glia-cell lines, but not in six endothelial-cell lines, two epithelial-cell lines or in two amnion-derived lines. Among neoplastic anchorage-dependent cell lines expression was found in 13 out of 29. EC-SOD was secreted into the culture medium by cell lines expressing the enzyme. The rate of EC-SOD synthesis varied by nearly 100-fold among the fibroblast lines and remained essentially constant in the individual lines during long-term culture. In the nine investigated cases, the secreted EC-SOD was of the high-heparin-affinity C type. It is suggested that tissue EC-SOD is secreted by a few well-dispersed cell types, such as fibroblasts and glia cells, to diffuse subsequently around and reversibly bind to heparan sulphate proteoglycan ligands in the glycocalyx of the surface of most tissue cell types and in the interstitial matrix.  相似文献   

17.
18.
Inhibition of oxidative stress has been reported to be involved in the cardioprotective effects of hydrogen sulfide (H(2)S) during ischemia/reperfusion (I/R). However, the mechanism whereby H(2)S regulates the level of cardiac reactive oxygen species (ROS) during I/R remains unclear. Therefore, we investigated the effects of H(2)S on pathways that generate and scavenge ROS. Our results show that pretreating rat neonatal cardiomyocytes with NaHS, a H(2)S donor, reduced the levels of ROS during the hypoxia/reoxygenation (H/R) condition. We found that H(2)S inhibited mitochondrial complex IV activity and increased the activities of superoxide dismutases (SODs), including Mn-SOD and CuZn-SOD. Further studies indicated that H(2)S up-regulated the expression of Mn-SOD but not CuZn-SOD. Using a cell-free system, we showed that H(2)S activates CuZn-SOD. An isothermal titration calorimetry (ITC) analysis indicated that H(2)S directly interacts with CuZn-SOD. Taken together, H(2)S inhibits mitochondrial complex IV and activates SOD to decrease the levels of ROS in cardiomyocytes during I/R.  相似文献   

19.
The aim of this study was to examine the association between combined concentrations of macro and trace elements and markers of oxidative stress and antioxidative defense system function together with selected cytokine levels. Based on the combined medians of the seminal plasma levels of calcium, magnesium, zinc, copper, iron, and selenium, the study subjects (88 fertile male volunteers) were divided into the following two subgroups: the Me-L group (low level of metals) and the Me-H group (high level of metals). There was a tendency toward reduced motility in the Me-H group compared to that in the Me-L group. The total protein, albumin, and total oxidation status (TOS) levels were significantly higher in the Me-H group than in the Me-L group. The total superoxide dismutase (SOD), Mn-SOD, and CuZn-SOD, activity in spermatozoa were significantly lower in the Me-H group than in the Me-L group. In seminal plasma, the Mn-SOD activity was significantly higher in the Me-H group, whereas the CuZn-SOD activity was significantly lower. Additionally, the activity levels of glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were lower in the Me-H group. The medians of IL-1β, IL-10, and IL-12 were significantly higher in the Me-H group than in the Me-L group, whereas the medians of IL-2, IL-5, and IL-13 were significantly lower. Higher levels of macro and trace elements in the seminal plasma of fertile males may be associated with decreased motility. Higher levels of the examined metals are associated with elevated oxidative stress accompanied by decreased activities of some of the antioxidant enzymes and increased pro-inflammatory cytokine levels.  相似文献   

20.
The purpose of this study was to investigate the effects of dietary zinc on free radical generation, lipid peroxidation, and superoxide dismutase (SOD) in exercised mice. In the first part of the study, 48 male weanling mice were randomly divided into three groups. They were fed a zinc-deficient diet containing 1.6 mg/kg zinc or were pair-fed or fed ad libitum a zinc-adequate diet supplemented with 50 mg/kg zinc. Half of each group received an exercise training program that consisted of swimming for 60 min per day in deionized water. The diets and exercise program persisted for 6 weeks. In the second part of the study, 64 mice were fed zinc-deficient diets for 6 weeks, and then one group was fed the zinc-deficient diet for an additional 3 weeks, and the other three groups were fed diets supplemented with 5, 50, and 500 mg/kg zinc, respectively. Half of each group also received the exercise program. Both blood and liver samples were examined. Free radicals in liver were directly detected by electron spin resonance techniques and the extent of lipid peroxidation was indicated by malonic dialdehyde (MDA). Both CuZn-SOD and Mn-SOD were measured. The results showed that exercise training increased the metabolism of zinc, and zinc deficiency induced an increased free radical generation and lipid peroxidation and a decreased hepatic CuZn-SOD activity in exercised mice. Furthermore, although exercise training had no effect on the level of free radicals in zinc-adequate mice, it could increase the hepatic mitochondrial MDA formation further in zinc-deficient animals and zinc deficiency would eliminate the exercise-induced increase in SOD activities which existed in zinc-adequate mice. A total of 50 mg/kg zinc supplemented in the diet was adequate to correct the zinc-deficient status in exercised mice while 5 mg/kg zinc had a satisfactory effect on the recovery of only sedentary zinc-deficient mice. However, 500 mg/kg zinc had a harmful effect on both sedentary and exercised zinc-deficient animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号