首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Arsenic (As) contamination of irrigation water represents a major constraint to Bangladesh agriculture. While arbuscular mycorrhizal (AM) fungi have their most significant effect on P uptake, they have also been shown to alleviate metal toxicity to the host plant. This study examined the effects of As and inoculation with an AM fungus, Glomus mosseae, on lentil (Lens culinaris L. cv. Titore). Plants were grown with and without AM inoculum for 9 weeks in a sand and terra green mixture 50:50 v/v and watered with five levels of As (0, 1, 2, 5, 10 mg As L−1 arsenate). Inoculum of Rhizobium leguminosarum b.v. Viceae strain 3841 was applied to all plants. Plants were fed with modified Hoagland solution (1/10 N of a full-strength solution and without P). Plant height, leaf number, pod number, plant biomass and shoot and root P concentration/offtake increased significantly due to mycorrhizal infection. Plant height, leaf/ pod number, plant biomass, root length, shoot P concentration/offtake, root P offtake and mycorrhizal infection decreased significantly with increasing As concentration. However, mycorrhizal inoculation reduced As concentration in roots and shoots. This study shows that growing lentil with compatible AM inoculum can minimise As toxicity and increase growth and P uptake.  相似文献   

2.
Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. was studied for its effect on their root colonization and plant growth of cucumber. Two isolates of Phoma sp. (GS8-2 and GS8-3) were tested with G. mosseae. The percent root length colonized by G. mosseae was not adversely affected by the presence of Phoma isolates. In contrast, the root colonization of both isolates GS8-2 and GS8-3 in 4-week-old plants was significantly reduced (80.7% and 84.3%, respectively) by added G. mosseae. Inoculating plants with each Phoma isolate significantly increased the shoot dry weight. However, dual inoculation of each Phoma isolate with G. mosseae had no significant effect on growth enhancement.  相似文献   

3.
Two experiments were carried out in pots with three compartments, a central one for root and hyphal growth and two outer ones which were accessible only for hyphae of the arbuscular mycorrhizal fungus, Glomus mosseae ([Nicol. and Gerd.] Gerdemann and Trappe). In the first experiment, mycorrhizal and nonmycorrhizal bean (Phaseolus vulgaris L.) plants were grown in two soils with high geogenic cadmium (Cd) or nickel (Ni) contents. In the second experiment, mycorrhizal and nonmycorrhizal maize (Zea mays L.) or bean plants were grown in a non-contaminated soil in the central compartment, and either the Cd- or Ni-rich soil in the outer compartments. In additional pots, mycorrhizal plants were grown without hyphal access to the outer compartments. Root and shoot dry weight was not influenced by mycorrhizal inoculation, but plant uptake of metals was significantly different between mycorrhizal and nonmycorrhizal plants. In the first experiment, the contribution of mycorrhizal fungi to plant uptake accounted for up to 37% of the total Cd uptake by bean plants, for up to 33% of the total copper (Cu) uptake and up to 44% of the total zinc (Zn) uptake. In contrast, Ni uptake in shoots and roots was not increased by mycorrhizal inoculation. In the second experiment, up to 24% of the total Cd uptake and also up to 24% of the total Cu uptake by bean could be attributed to mycorrhizal colonisation and delivery by hyphae from the outer compartments. In maize, the mycorrhizal colonisation and delivery by hyphae accounted for up to 41% of the total Cd uptake and 19% of the total Cu uptake. Again, mycorrhizal colonisation did not contribute to Ni uptake by bean or maize. The results demonstrate that the arbuscular mycorrhizal fungus contributed substantially not only to Cu and Zn uptake, but also to uptake of Cd (but not Ni) by plants from soils rich in these metal cations. Deceased 21 September 1996 Deceased 21 September 1996  相似文献   

4.
Tomato plants pre-colonised by the arbuscular mycorrhizal fungusGlomus mosseae showed decreased root damage by the pathogenPhytophthora nicotianae var.parasitica. In analyses of the cellular bases of their bioprotective effect, a prerequisite for cytological investigations of tissue interactions betweenG. mosseae andP. nicotianae v.parasitica was to discriminate between the hyphae of the two fungi within root tissues. We report the use of antibodies as useful tools, in the absence of an appropriate stain for distinguishing hyphae ofP. nicotianae v.parasitica from those ofG. mosseae inside roots, and present observations on the colonisation patterns by the pathogenic fungus alone or during interactions in mycorrhizal roots. Infection intensity of the pathogen, estimated using an immunoenzyme labelling technique on whole root fragments, was lower in mycorrhizal roots. Immunogold labelling ofP. nicotianae v.parasitica on cross-sections of infected tomato roots showed that inter or intracellular hyphae developed mainly in the cortex, and their presence induced necrosis of host cells, the wall and contents of which showed a strong autofluorescence in reaction to the pathogen. In dual fungal infections of tomato root systems, hyphae of the symbiont and the pathogen were in most cases in different root regions, but they could also be observed in the same root tissues. The number ofP. nicotianae v.parasitica hyphae growing in the root cortex was greatly reduced in mycorrhizal root systems, and in mycorrhizal tissues infected by the pathogen, arbuscule-containing cells surrounded by intercellularP. nicotianae v.parasitica hyphae did not necrose and only a weak autofluorescence was associated with the host cells. Results are discussed in relation to possible processes involved in the phenomenon of bioprotection in arbuscular mycorrhizal plants.  相似文献   

5.
Plant Zn uptake from low Zn soils can be increased by Zn-mobilizing chemical rhizosphere processes. We studied whether inoculation with arbuscular mycorrhizal fungi (AMF) can be an additional or an alternative strategy. We determined the effect of AMF inoculation on growth performance and Zn uptake by rice genotypes varying in Zn uptake when nonmycorrhizal. A pot experiment was conducted with six aerobic rice genotypes inoculated with Glomus mosseae or G. etunicatum or without AMF on a low Zn soil. Plant growth, Zn uptake and mycorrhizal responsiveness were determined. AMF-inoculated plants produced more biomass and took up more Zn than nonmycorrhizal controls. Mycorrhizal inoculation, however, significantly increased Zn uptake only in genotypes that had a low Zn uptake in the nonmycorrhizal condition. We conclude that genotypes that are less efficient in Zn uptake when nonmycorrhizal are more responsive to AMF inoculation. We provide examples from literature allowing generalization of this conclusion on a trade off between mycorrhizal responsiveness and nutrient uptake efficiency.  相似文献   

6.
Liu Y  Zhu YG  Chen BD  Christie P  Li XL 《Mycorrhiza》2005,15(3):187-192
We report for the first time some effects of colonization by an arbuscular mycorrhizal (AM) fungus (Glomus mosseae) on the biomass and arsenate uptake of an As hyperaccumulator, Pteris vittata. Two arsenic levels (0 and 300 mg As kg–1) were applied to an already contaminated soil in pots with two compartments for plant and hyphal growth in a glasshouse experiment. Arsenic application had little or no effect on mycorrhizal colonization, which was about 50% of root length. Mycorrhizal colonization increased frond dry matter yield, lowered the root/frond weight ratio, and decreased frond As concentration by 33–38%. Nevertheless, transfer of As to fronds showed a 43% increase with mycorrhizal colonization at the higher soil As level. Frond As concentrations reached about 1.6 g kg–1 (dry matter basis) in non-mycorrhizal plants in the As-amended soil. Mycorrhizal colonization elevated root P concentration at both soil As levels and mycorrhizal plants had higher P/As ratios in both fronds and roots than did non-mycorrhizal controls.  相似文献   

7.
In split-root systems of alfalfa (Medicago sativa L.), already existing nodules or arbuscular mycorrhizal roots suppress further establishment of symbiosis in other root parts, a phenomenon named autoregulation. Roots treated with rhizobial nodulation signals (Nod factors) induce a similar systemic suppression of symbiosis.In order to test the hypothesis that flavonoids play a role in this systemic suppression, split-root systems of alfalfa plants were inoculated on one side of the split-root system with Sinorhizobium meliloti or Glomus mosseae or were treated with Nod factor. HPLC-analysis of alfalfa root extracts from both sides of the split-root system revealed a persistent local and systemic accumulation pattern of some flavonoids associated with the different treatments. The two flavonoids, formononetin and ononin, could be identified to be similarily altered after rhizobial or mycorrhizal inoculation or when treated with Nod factor.Exogenous application of formononetin and ononin partially restored nodulation and mycorrhization pointing towards the involvement of these two secondary compounds in the autoregulation of both symbioses.  相似文献   

8.
The effect of Streptomyces albovinaceus (S-22) and Bacillus sp. (B1) on the growth response, nodulation, nutrition and nitrogenase activities of faba bean (Vicia faba) varieties infected with Glomus mosseae under pot conditions in sterile soil amended with chitin was studied. The growth, nodulation, nutrients content and nitrogenase activity of mycorrhiza-treated plants of Giza-667 were significantly increased compared to untreated ones. Such increases were related to the increase in mycorrhizal root infection. Amendment of soil with chitin alone reduced the growth, nodulation, total nitrogen contents and nitrogenase activities of mycorrhiza-treated faba bean plants (Giza-667) compared to untreated plants. Inoculation of plants with S. albovinaceus or Bacillus sp. significantly increased the level of mycorrhizal roots infection, but addition of chitin to the soil in combination with Bacillus sp. reduced the mycorrhizal infection of faba bean roots. Highest phosphorus contents of faba bean Giza-667 were recorded after G. mosseae inoculation in the presence of all treatments. Similar results were observed for the other varieties. The microbial populations were significantly increased in rhizospheres amended with chitin. Such increases were not in response to the mycorrhizal inoculation. Generally, the microflora of faba bean rhizospheres was increased after treatment with G. mosseae in the absence of chitin amendment alone compared with non-mycorrhizal rhizospheres.  相似文献   

9.
Field response of wheat to arbuscular mycorrhizal fungi and drought stress   总被引:3,自引:0,他引:3  
Al-Karaki G  McMichael B  Zak J 《Mycorrhiza》2004,14(4):263-269
Mycorrhizal plants often have greater tolerance to drought than nonmycorrhizal plants. This study was conducted to determine the effects of arbuscular mycorrhizal (AM) fungi inoculation on growth, grain yield and mineral acquisition of two winter wheat (Triticum aestivum L.) cultivars grown in the field under well-watered and water-stressed conditions. Wheat seeds were planted in furrows after treatment with or without the AM fungi Glomus mosseae or G. etunicatum. Roots were sampled at four growth stages (leaf, tillering, heading and grain-filling) to quantify AM fungi. There was negligible AM fungi colonization during winter months following seeding (leaf sampling in February), when soil temperature was low. During the spring, AM fungi colonization increased gradually. Mycorrhizal colonization was higher in well-watered plants colonized with AM fungi isolates than water-stressed plants. Plants inoculated with G. etunicatum generally had higher colonization than plants colonized with G. mosseae under both soil moisture conditions. Biomass and grain yields were higher in mycorrhizal than nonmycorrhizal plots irrespective of soil moisture, and G. etunicatum inoculated plants generally had higher biomass and grain yields than those colonized by G. mosseae under either soil moisture condition. The mycorrhizal plants had higher shoot P and Fe concentrations than nonmycorrhizal plants at all samplings regardless of soil moisture conditions. The improved growth, yield and nutrient uptake in wheat plants reported here demonstrate the potential of mycorrhizal inoculation to reduce the effects of drought stress on wheat grown under field conditions in semiarid areas of the world.  相似文献   

10.
A. Schubert  P. Wyss 《Mycorrhiza》1995,5(6):401-404
Root extracts of leek (Allium porrum L.) and soybean (Glycine max L. Merr.) showed trehalase activity which was inhibited by phloridzin and was several times higher than the activity of general -glucosidase. The activity had an acidic optimum. Trehalase activity in extracts of sporocarps and extraradical mycelium of the arbuscular mycorrhizal fungus Glomus mosseae Nicol. & Gerd. (Trappe & Gerd.) was higher than in root extracts and had an optimum at pH 7. Following inoculation with G. mosseae, trehalase activity increased in mycorrhizal roots above the levels observed in nonmycorrhizal roots. Irrespective of fungal colonization, root trehalase activity increased in the presence of Mg2+, decreased in the presence of Mn2+ and Zn2+, and was unaffected by Na2EDTA.  相似文献   

11.
为了解丛枝菌根真菌(arbuscular mycorrhiza,AMF)对西南桦幼苗生长和光合生理的影响,对西南桦(Betula alnoides)优良无性系接种AMF菌株后的生长、光合参数、叶绿素含量和荧光参数进行了研究。结果表明,6个AMF菌株均能与西南桦无性系幼苗形成共生体,接种根内球囊霉(Glomus intraradices)菌株(AMF5)和摩西球囊霉(G.mosseae)HUN03B菌株(AMF3)显著提高了幼苗生长量、净光合速率、水分利用效率、叶绿素含量和荧光参数(P0.05),显示出AMF5、AMF3与幼苗的亲和力明显优于其他菌株。西南桦4个无性系间的菌根侵染率差异不显著(P0.05),但AMF对无性系FB4、BY1的促生效应显著优于FB4+和A5。因此,适合与西南桦共生的优良菌株为AMF5和AMF3,这为西南桦菌根化育苗提供理论依据。  相似文献   

12.
为了解丛枝菌根真菌(AMF)和不同形态氮对杉木(Cunninghamia lanceolata)生长和养分吸收的影响,以1 a生杉木幼苗接种摩西球囊霉(Glomus mosseae)和添加不同形态氮(NH4+-N和NO3-N),对其养分元素和生长状况的变化进行研究。结果表明,AMF显著提高了杉木的苗高和生物量,促进了杉木对N、P、K、Ca、Mg、Fe和Na的吸收,AMF对微量元素Fe、Na的促进作用总体上要强于大量元素K、Ca。与NO3-N相比,AMF显著提高了NH4+-N处理杉木的生物量、总C和N、Ca、Mg、Mn含量,而且这种显著性在叶中普遍高于根和茎。接种AMF可以促进杉木幼苗的生长和对养分元素的吸收,且添加NH4+-N处理的促进作用要强于NO3-N。  相似文献   

13.
Seven banana cultivars (Musa acuminata, AAA group) were inoculated with two species of vesicular arbuscular mycorrhizal (VAM) fungi (Glomus mosseae and Glomus macrocarpum) in a greenhouse experiment. Inoculated plants had generally greater shoot dry weight and shoot phosphorus concentrations compared to the noninoculated plants. A great variation in dependency on mycorrhizal colonization was observed among the banana cultivars. Cv. Williams showed the highest relative mycorrhizal dependency (RMD) and cv. Poyo the lowest. For all the cultivars studied, inoculation with G. macrocarpum resulted in the highest RMD values. Both root dry weight and root hair length or density of the noninoculated plants were inverserly correlated with the RMD values of cultivars.  相似文献   

14.
Citrus plants strongly depend on mycorrhizal symbiosis because of less or no root hairs, but few reports have studied if their root traits and physiological status could be altered by different arbuscular mycorrhizal fungi (AMF). In a pot experiment we evaluated the effects of three AMF species, Glomus mosseae, G. versiforme and Paraglomus occultum on the root traits and physiological variables of the trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Root mycorrhizal colonization was 58–76% after 180 days of inoculation. AMF association significantly increased plant height, stem diameter, leaf number per plant, shoot and root biomass. Mycorrhizal seedlings also had higher total root length, total root projected area, total root surface area and total root volume but thinner root diameter. Among the three AMFs, greater positive effects on aboveground growth generally ranked as G. mosseae > P. occultum > G. versiforme, whilst on root traits as G. mosseae ≈ P. occultum > G. versiforme. Compared to the non-mycorrhizal seedlings, contents of chlorophyll, leaf glucose and sucrose, root soluble protein were significantly increased in the mycorrhizal seedlings. In contrast, root glucose and sucrose, leaf soluble protein, and activity of peroxidase (POD) in both leaves and roots were significantly decreased in the mycorrhizal seedlings. It suggested that the improvement of root traits could be dependent on AMF species and be related to the AMF-induced alteration of carbohydrates and POD.  相似文献   

15.
Vierheilig  Horst  Iseli  Beatrice  Alt  Monica  Raikhel  Natasha  Wiemken  Andres  Boller  Thomas 《Plant and Soil》1996,183(1):131-136
Roots of stinging nettle (Urtica dioica L.) were sampled at different sites around Basel (Switzerland) and examined under the microscope. They were completely devoid of mycorrhizal structures. Similarly, stinging nettle plants grown in the greenhouse in the presence of the arbuscular mycorrhizal fungusGlomus mosseae did not show any signs of mycorrhiza formation. Spread ofG. mosseae through the rhizosphere of stinging nettle plants was inhibited, and application of extracts of stinging nettle roots and rhizomes to hyphal tips ofG. mosseae reduced hyphal growth.Urtica dioica agglutinin, an antifungal protein present in the rhizomes of stinging nettle, inhibited hyphal growth in a similar way as the crude root extract. The possibility thatUrtica dioica agglutinin is at least partially responsible for the inability of stinging nettle to form the arbuscular mycorrhizal symbiosis withG. mosseae is discussed.  相似文献   

16.
The ability of fluorescent pseudomonads and arbuscular mycorrhizal fungi (AMF) to promote plant growth is well documented but knowledge of the impact of pseudomonad-mycorrhiza mixed inocula on root architecture is scanty. In the present work, growth and root architecture of tomato plants (Lycopersicon esculentum Mill. cv. Guadalete), inoculated or not with Pseudomonas fluorescens 92rk and P190r and/or the AMF Glomus mosseae BEG12, were evaluated by measuring shoot and root fresh weight and by analysing morphometric parameters of the root system. The influence of the microorganisms on phosphorus (P) acquisition was assayed as total P accumulated in leaves of plants inoculated or not with the three microorganisms. The two bacterial strains and the AMF, alone or in combination, promoted plant growth. P. fluorescens 92rk and G. mosseae BEG12 when co-inoculated had a synergistic effect on root fresh weight. Moreover, co-inoculation of the three microorganisms synergistically increased plant growth compared with singly inoculated plants. Both the fluorescent pseudomonads and the myco-symbiont, depending on the inoculum combination, strongly affected root architecture. P. fluorescens 92rk increased mycorrhizal colonization, suggesting that this strain is a mycorrhization helper bacterium. Finally, the bacterial strains and the AMF, alone or in combination, improved plant mineral nutrition by increasing leaf P content. These results support the potential use of fluorescent pseudomonads and AMF as mixed inoculants for tomato and suggest that improved tomato growth could be related to the increase in P acquisition.  相似文献   

17.
The effects of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato were tested in a greenhouse experiment. Chicken layer manure was used as a carrier substrate for the inoculum of P. lilacinus. The following parameters were used: gall index, average number of galls per root system, plant height, shoot and root weights. Inoculation of tomato plants with G. mosseae did not markedly increase the growth of infected plants with M. javanica. Inoculation of plants with G. mosseae and P. lilacinus together or separately resulted in similar shoots and plant heights. The highest root development was achieved when mycorrhizal plants were inoculated with P. lilacinus to control root-knot nematode. Inoculation of tomato plants with G. mosseae suppressed gall index and the average number of galls per root system by 52% and 66%, respectively, compared with seedlings inoculated with M. javanica alone. Biological control with both G. mosseae and P. lilacinus together or separately in the presence of layer manure completely inhibited root infection with M. javanica. Mycorrhizal colonization was not affected by the layer manure treatment or by root inoculation with P. lilacinus. Addition of layer manure had a beneficial effect on plant growth and reduced M. javanica infection.  相似文献   

18.
为了解2种丛枝菌根真菌(AMF)摩西管柄囊霉(Funneliformis mosseae, FM)和地表球囊霉(Glomus versiforme, GV)对入侵植物南美蟛蜞菊(Wedelia trilobata)的生长和对难溶性磷酸盐利用的影响,采用沙培盆栽方式,研究了南美蟛蜞菊在接种AMF与添加难溶性磷酸盐的生长和磷含量的变化。结果表明,在磷限制环境下FM对南美蟛蜞菊的侵染率达55%~69%,GV的侵染率达到63%~80%。添加难溶性磷酸盐后,2种AMF均促进了南美蟛蜞菊茎的伸长(FM:+46%; GV:+65%)、总生物量的增加(FM:+27.2%; GV:+40%)和磷含量的增加(FM:+36.6%; GV:+40.7%)。对比FM,GV对植物利用难溶性磷有更显著的促进作用。因此,南美蟛蜞菊与2种AMF形成的共生体系可以促进植物生长和对营养资源的利用,提高对难溶性磷的吸收效率可能使得南美蟛蜞菊在营养贫乏的环境中更好地建立种群。  相似文献   

19.
Cabbage (Brassica oleracea, var. capitata, cv. Hercules) seedlings were inoculated with vesicular-arbuscular mycorrhizal (VAM) fungi Glomus fasciculatum, G. aggregatum, and G. mosseae. Differential efficiency in mycorrhizal colonization and the specificity of fungal symbiont to stimulate the growth and nutrient uptake of the host were observed. In addition, there was an increase in phenol, protein, reducing sugar contents, and peroxidase activity in the VAM inoculated seedlings. Since these compounds are known to confer resistance against fungal pathogens, the use of VAM as a biological control agent to protect cabbage against several root diseases is suggested.  相似文献   

20.
A greenhouse investigation was conducted to study the influence of the arbuscular mycorrhizal (AM) fungus Glomus mosseae and the plant growth-promoting rhizomicroorganisms (PGPRs) Bacillus coagulans and Trichoderma harzianum on the growth and nutrition of micropropagated Ficus benjamina plantlets. The AM fungus was inoculated either singly or in combination with the PGPRs. Plants showed maximum plant height, biomass, P content, mycorrhizal root colonization, spore numbers and populations of T. harzianum and B. coagulans in root zone soil when all the three organisms were inoculated together. Thus, when G. mosseae co-inoculated with PGPRs enhances growth and nutrition of Ficus benjamina. T. harzianum and B. coagulans are thus designated as mycorrhizal helper organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号