首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of root nodule symbioses are known for higher plants, legume and actinorhizal symbioses. In legume symbioses, bacterial signal factors induce the expression of ENOD40 genes. We isolated an ENOD40 promoter from an actinorhizal plant, Casuarina glauca, and compared its expression pattern in a legume (Lotus japonicus) and an actinorhizal plant (Allocasuarina verticillata) with that of an ENOD40 promoter from the legume soybean (GmENOD40-2). In the actinorhizal Allocasuarina sp., CgENOD40-GUS and GmENOD40-2-GUS showed similar expression patterns in both vegetative and symbiotic development, and neither promoter was active during nodule induction. The nonsymbiotic expression pattern of CgENOD40-GUS in the legume genus Lotus resembled the nonsymbiotic expression patterns of legume ENOD40 genes; however, in contrast to GmENOD40-2-GUS, CgENOD40-GUS was not active during nodule induction. The fact that only legume, not actinorhizal, ENOD40 genes are induced during legume nodule induction can be linked to the phloem unloading mechanisms established in the zones of nodule induction in the roots of both types of host plants.  相似文献   

2.
3.
The establishment of a nitrogen-fixing root nodule on legumes requires the induction of mitotic activity of cortical cells leading to the formation of the nodule primordium and the infection process by which the bacteria enter this primordium. Several genes are up-regulated during these processes, among them ENOD40. Here it is shown, by using gene-specific knock-down of the two Medicago truncatula ENOD40 genes, that both genes are involved in nodule initiation. Further, during nodule development, both genes are essential for bacteroid development.  相似文献   

4.
5.
We examined the timing and location of several early root responses to Rhizobium leguminosarum bv. trifolii infection, compared with a localized addition of cytokinin in white clover, to study the role of cytokinin in early signaling during nodule initiation. Induction of ENOD40 expression by either rhizobia or cytokinin was similar in timing and location and occurred in nodule progenitor cells in the inner cortex. Inoculation of rhizobia in the mature root failed to induce ENOD40 expression and cortical cell divisions (ccd). Nitrate addition at levels repressing nodule formation inhibited ENOD40 induction by rhizobia but not by cytokinin. ENOD40 expression was not induced by auxin, an auxin transport inhibitor, or an ethylene precursor. In contrast to rhizobia, cytokinin addition was not sufficient to induce a modulation of the auxin flow, the induction of specific chalcone synthase genes, and the accumulation of fluorescent compounds associated with nodule initiation. However, cytokinin addition was sufficient for the localized induction of auxin-induced GH3 gene expression and the initiation of ccd. Our results suggest that rhizobia induce cytokinin-mediated events in parallel to changes in auxin-related responses during nodule initiation and support a role of ENOD40 in regulating ccd. We propose a model for the interactions of cytokinin with auxin, ENOD40, flavonoids, and nitrate during nodulation.  相似文献   

6.
7.
8.
We isolated ENOD5, ENOD12 and ENOD40 homologues from Vicia sativa and studied their expression pattern during Rhizobium-induced nodule formation. Comparison of the VsENOD40 nucleotide sequence with the pea, soybean and alfalfa ENOD40 sequences showed that the sequences contain two conserved regions, called region I and region II. Comparison of all the potential open reading frames (ORFs) showed that all the five different ENOD40 clones encode a highly conserved small polypeptide of 12 or 13 amino acids encoded by an ORF located in region I. Furthermore we studied with in situ hybridization the expression pattern of VsENOD5, VsENOD12 and VsENOD40 during Rhizobium-induced nodule formation. Although the expression of these genes is largely similar to that of the pea counterparts, differences where found for the expression of VsENOD12 and VsENOD40 in Vicia. VsENOD12 is expressed in the whole prefixation zone II, whereas in pea ENOD12 is only expressed in the distal part of this zone. VsENOD40 is expressed in the uninfected cells of interzone II–III; while in pea ENOD40 is expressed in both the uninfected and infected cells of this zone.  相似文献   

9.
The symbiotic association between legumes and nitrogen-fixing bacteria collectively known as rhizobia results in the formation of a unique plant root organ called the nodule. This process is initiated following the perception of rhizobial nodulation factors by the host plant. Nod factor (NF)-stimulated plant responses, including nodulation-specific gene expression, is mediated by the NF signaling pathway. Plant mutants in this pathway are unable to nodulate. We describe here the cloning and characterization of two mutant alleles of the Medicago truncatula ortholog of the Lotus japonicus and pea (Pisum sativum) NIN gene. The Mtnin mutants undergo excessive root hair curling but are impaired in infection and fail to form nodules following inoculation with Sinorhizobium meliloti. Our investigation of early NF-induced gene expression using the reporter fusion ENOD11::GUS in the Mtnin-1 mutant demonstrates that MtNIN is not essential for early NF signaling but may negatively regulate the spatial pattern of ENOD11 expression. It was recently shown that an autoactive form of a nodulation-specific calcium/calmodulin-dependent protein kinase is sufficient to induce nodule organogenesis in the absence of rhizobia. We show here that MtNIN is essential for autoactive calcium/calmodulin-dependent protein kinase-induced nodule organogenesis. The non-nodulating hcl mutant has a similar phenotype to Mtnin, but we demonstrate that HCL is not required in this process. Based on our data, we suggest that MtNIN functions downstream of the early NF signaling pathway to coordinate and regulate the correct temporal and spatial formation of root nodules.  相似文献   

10.
11.
The expression of the auxin responsive reporter construct, GH3:gusA, was examined in transgenic white clover plants to assess changes in the auxin balance during the earliest stages of root nodule formation. Reporter gene expression was monitored at marked locations after the application of bacteria or signal molecules using two precise inoculation techniques: spot-inoculation and a novel method for ballistic microtargeting. Changes in GH3:gusA expression were monitored after the inoculation of Rhizobium leguminosarum biovar trifolii, non-host rhizobia, lipo-chitin oligosaccharides (LCOs), chitin oligosaccharides, a synthetic auxin transport inhibitor (naphthylphthalamic acid; NPA), auxin, the ENOD40-1 peptide or different flavonoids. The results show that clover-nodulating rhizobia induce a rapid, transient and local downregulation of GH3:gusA expression during nodule initiation followed by an upregulation of reporter gene expression at the site of nodule initiation. Microtargeting of auxin caused a local and acropetal upregulation of GH3:gusA expression, whereas NPA caused local and acropetal downregulation of expression. Both spot-inoculation and microtargeting of R. l. bv. trifolii LCOs or flavonoid aglycones induced similar changes to GH3:gusA expression as NPA. O-acetylated chitin oligosaccharides caused similar changes to GH3:gusA expression as R. l. bv. trifolii spot-inoculation, but only after delivery by microtargeting. Non-O-acetylated chitin oligosaccharides, flavonoid glucosides or the ENOD40-1 peptide failed to induce any detectable changes in GH3:gusA expression. GH3:gusA expression patterns during the later stages of nodule and lateral root development were similar. These results support the hypothesis that LCOs and chitin oligosaccharides act by perturbing the auxin flow in the root during the earliest stages of nodule formation, and that endogenous flavonoids could mediate this response.  相似文献   

12.
The lipo-chitin (LCO) nodulation signal (nod signal) purified from Bradyrhizobium japonicum induced nodule primordia on soybean (i.e. Glycine soja) roots. These primordia were characterized by a bifurcated vascular connection, cortical cell division, and the accumulation of mRNA of the early nodulin gene, ENOD40. A chemically synthesized LCO identical in structure to the Nod signal purified from B. japonicum cultures showed the same activity when inoculated on to soybean roots. Surprisingly, synthetic LCO or chitin pentamer, inactive in inducing root hair curling (HAD) or cortical cell division (NOI) in G. soja, induced the transient accumulation of ENOD40 mRNA. In roots inoculated with such LCO, ENOD40 mRNA was abundant at 40 h after inoculation but decreased to the background levels 6 days after inoculation. In contrast, nod signals active in inducing HAD and NOI induced high levels of ENOD40 accumulation at 40 h and 6 days after inoculation. In situ hybridization analysis showed that ENOD40 mRNA accumulated in the pericycle of the vascular bundle at 24 h after root inoculation with nod signal. At 6 days post-inoculation with nod signal, ENOD40 expression was seen in dividing subepidermal cortical cells. These results provide morphological and molecular evidence that nodule induction in soybean in response to purified or synthetic nod signal is similar, if not identical, to nodule formation induced by bacterial inoculation. Surprisingly, ENOD40 mRNA accumulation occurs in response to non-specific chitin signals. This suggests that, in the case of ENOD40, nodulation specificity is not determined at the level of initial gene expression.  相似文献   

13.
14.
15.
16.
A pea cDNA clone representing the homologue of the soybean pGmENOD40-1 was isolated and characterized. At the nucleotide level both clones share 55% homology. Strikingly, the homology between the polypeptides derived from the pea and soybean ENOD40 cDNA sequences is only 14%. Despite this low homology Southern analyses revealed that the isolated pea cDNA clone represents the single pea ENOD40. In situ hybridizations showed that at early stages of nodule development and in mature nodules the expression pattern of pea ENOD40 is comparable to that of soybean ENOD40. Although ENOD40 show similar expression patterns in these two nodules, it is questionable whether the putative polypeptides have a similar function, since the homology is very low.  相似文献   

17.
18.
19.
To demonstrate the importance of an extensively studied early nodulin gene ENOD12 in symbiotic nodule development, plants of different Medicago sativa subspecies were tested for the presence or absence of ENOD12 alleles. In M. s. ssp coerulea w2 (Mcw2), two ENOD12 genes were detected, whereas in M. s. ssp quasifalcata k93 (Mqk93) only one gene was present. In both plants, the ENOD12 genes were expressed in nodules induced by Rhizobium meliloti. The nucleotide sequence of the ENOD12 genes showed that the two Mcw2-specific genes were similar to the ENOD12A and ENOD12B genes of the tetraploid M. s. ssp sativa. ENOD12 from Mqk93 was similar to the corresponding gene found in M. truncatula. From the aligned ENOD12 sequences, an evolutionary tree was constructed. Genetic analysis of the progenies of a cross between Mqk93 and Mcw2 showed that several offspring in F1 carried a null allele originating from Mcw2, and among the F2 progenies, plants with the null allele only lacking the ENOD12 gene appeared. Surprisingly, the ENOD12-deficient plants were similar to their wild-type parents in viability, nodule development, nodule structure, and nitrogen fixation efficiency. Therefore, we concluded that in Medicago the ENOD12 gene is not required for symbiotic nitrogen fixation. Furthermore, we proposed that the heterozygous nature of these legumes can be exploited for the identification of mutated alleles of other known nodulin genes; this will permit the construction of plant mutants deficient in these genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号