首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Positional cloning of rare disease genes depends on the availability of highly polymorphic markers near the disease loci. The most abundant class of polymorphic markers in the human genome is CA-repeats. We have developed a strategy for the rapid isolation of highly polymorphic CA-repeats from YAC clones. Total DNA of yeast clones containing partly overlapping YACs is digested with frequent cutter restriction enzymes, blotted and hybridized with a poly(CA/GT) probe under high stringency conditions that enable preferential detection of long CA-repeats. The repeats detected in this way are isolated by PCR using vectorette linkers, sequenced, and appropriate flanking markers are constructed for genotyping. All of the CA-repeats identified using this approach were highly polymorphic. This simple and rapid approach should allow the development of highly polymorphic markers at any genomic region cloned in YACs.  相似文献   

2.
A genetic linkage map of markers for human chromosome 20   总被引:3,自引:0,他引:3  
A continuous genetic linkage map with five polymorphic DNA markers, including one that defines a locus containing a variable number of tandem repeats (VNTR), has been constructed from genotypic analysis of 59 large reference families. The map spans a genetic distance of 105 cM in males and 115 cM in females and provides initial anchor points for a high-resolution map of human chromosome 20.  相似文献   

3.
Genetic and physical mapping around the properdin P gene.   总被引:6,自引:0,他引:6  
A CA repeat has been found on the human X chromosome within 16 kb of the gene encoding properdin P factor (PFC) and has been shown to be a highly informative marker. Two more polymorphic CA repeats were found in a cosmid containing DXS228. The CA repeats, and other markers from proximal Xp, were mapped genetically in CEPH families and the likely order of markers was established as Xpter-(DXS7, MAO-A, DXS228)-(PFC, DXS426)-(TIMP, OATL1)-DXS255-Xcen. This places PFC in the region Xp11.3-Xp11.23, thus refining previous in situ hybridization data. Two yeast artificial chromosomes (YACs) (440 and 390 kb) contain both PFC and DXS426, and one of them (440 kb) also contains TIMP. This confirms the genetic order TIMP-(PFC, DXS426). PFC and TIMP are located on the same 100-kb SalI/PvuI fragment of the 440-kb YAC. Given the genetic orientation of TIMP and (PFC, DXS426), this YAC can now serve as a starting point for directional walking toward disease genes located in Xp11.3-Xp11.2 such as retinitis pigmentosa (RP2) and Wiskott-Aldrich syndrome.  相似文献   

4.
Microsatellite repeat loci can provide informative markers for genetic linkage. Currently, the human chromosome 2 genetic linkage map has very few highly polymorphic markers. Being such a large chromosome, it will require a large number of informative markers for the dense coverage desired to allow disease genes to be mapped quickly and accurately. Dinucleotide repeat loci from two anonymous chromosome 2 genomic DNA clones were sequenced so that oligonucleotide primers could be designed for amplifying each locus using the polymerase chain reaction (PCR). Five sets of PCR primers were also generated from nucleotide sequences in the GenBank Database of chromosome 2 genes containing dinucleotide repeats. In addition, one PCR primer pair was made that amplifies a restriction fragment length polymorphism on the TNP1 gene (Hoth and Engel, 1991). These markers were placed on the CEPH genetic linkage map by screening the CEPH reference DNA panel with each primer set, combining these data with those of other markers previously placed on the map, and analyzing the combined data set using CRI-MAP and LINKAGE. The microsatellite loci are highly informative markers and the TNP1 locus, as expected, is only moderately informative. A map was constructed with 38 ordered loci (odds 1000:1) spanning 296 cM (male) and 476 cM (female) of chromosome 2 compared with 306 cM (male) and 529 cM (female) for a previous map of 20 markers.  相似文献   

5.
We have constructed and characterized two related human chromosome 12-specific cosmid libraries. DNA from flow-sorted chromosomes from a somatic cell hybrid was cloned into a cosmid vector. Approximately 61% of the cosmids in the nearly 26,200 member arrayed libraries (LLt2NC01 and LLt2NC02) contain human DNA inserts, and 31% of the cosmids derived from human DNA contain CA repeats. One hundred and fifty-two cosmids isolated from the libraries have been mapped by fluorescence in situ hybridization (FISH). Cosmids containing human DNA inserts were localized by FISH exclusively to chromosome 12, confirming the chromosomal specificity of the libraries. The cosmids have been localized to all parts of this chromosome, although some regions are more highly represented than others. Partial sequence information was obtained from 44 mapped cosmids, and oligonucleotide primer pairs were synthesized that define unique sequence tagged sites (STSs). These mapped cosmids, and unique STSs derived from them, provide a set of useful clones and primer pairs for screening YAC libraries and developing contigs centered on regions of interest within chromosome 12. In addition, 120 of the mapped cosmids contain CA repeats, and thus they also provide a useful resource for defining highly polymorphic simple tandem repeat elements that serve as genetic markers for linkage analysis and disease gene localization.  相似文献   

6.
Twenty loci form a continuous linkage map of markers for human chromosome 2   总被引:4,自引:0,他引:4  
We have used a combination of 20 DNA markers and 1 protein electromorph, defining 20 loci, to construct a genetic linkage map of chromosome 2. These markers form a continuous linkage group of 306 cM in males and 529 cM in females. Female map distances varied from approximately twofold higher to equivalence from those of males across the map. Among the DNA markers are six well-distributed, highly polymorphic markers reflecting loci that contain a variable number of tandem repeats that will be highly efficient anchor points for the eventual application of this map to studies of human genetic disease.  相似文献   

7.
Simple sequence repeat (SSR) markers were developed for cultivated sunflower (Helianthus annuus L.) from the DNA sequences of 970 clones isolated from genomic DNA libraries enriched for (CA)n,, (CT)n, (CAA)n, (CATA)n, or (GATA)n. The clones harbored 632 SSRs, of which 259 were unique. SSR markers were developed for 130 unique SSRs by designing and testing primers for 171 unique SSRs. Of the total, 74 SSR markers were polymorphic when screened for length polymorphisms among 16 elite inbred lines. The mean number of alleles per locus was 3.7 for dinucleotide, 3.6 for trinucleotide, and 9.5 for tetranucleotide repeats and the mean polymorphic information content (PIC) scores were 0.53 for dinucleotide, 0.53 for trinucleotide, and 0.83 for tetranucleotide repeats. Cluster analyses uncovered patterns of genetic diversity concordant with patterns produced by RFLP fingerprinting. SSRs were found to be slightly more polymorphic than RFLPs. Several individual SSRs were significantly more polymorphic than RFLP and other DNA markers in sunflower (20% of the polymorphic SSR markers had PIC scores ranging from 0.70 to 0.93). The newly developed SSRs greatly increase the supply of sequence-based DNA markers for DNA fingerprinting, genetic mapping, and molecular breeding in sunflower; however, several hundred additional SSR markers are needed to routinely construct complete genetic maps and saturate the genome.  相似文献   

8.
We have used a combination of 30 serological, protein electromorphic, and DNA markers defining 28 loci to construct a linkage map of chromosome 1. These markers form a continuous linkage group of 320 cM in males and 608 cM in females; female genetic distances were on average twofold higher than those of males across the map. Among the DNA markers are 10 highly polymorphic markers reflecting loci that contain a variable number of tandem repeats, well distributed over the length of the chromosome, that will be highly efficient anchor points for application of this map to studies of human genetic disease.  相似文献   

9.
We have constructed a 2.4-cM resolution genetic linkage map for chromosome 7q that is bounded by centromere and telomere polymorphisms and contains 66 loci (88 polymorphic systems), 38 of which are uniquely placed with odds for order of at least 1000:1. Ten genes are included in the map and 11 markers have heterozygosities of at least 70%. This map is the first to incorporate several highly informative markers derived from a telomere YAC clone HTY146 (locus D7S427), including HTY146c3 (HET 92%). The telomere locus markers span at least 200 kb of the 7q terminus and no crossovers within the physical confines of the locus were observed in approximately 240 jointly informative meioses. The sex-equal map length is 158 cM and the largest genetic interval between uniquely localized markers in this map is 11 cM. The female and male map lengths are 181 and 133 cM, respectively. The map is based on the CEPH reference pedigrees and includes over 4000 new genotypes, our previously reported data plus 29 allele systems from the published CEPH version 5 database, and was constructed using the program package CRI-MAP. This genetic linkage map can be considered a baseline map for 7q, and will be useful for defining the extent of chromosome deletions previously reported for breast and prostate cancers, for developing additional genetic maps such as index marker and 1-cM maps, and ultimately for developing a fully integrated genetic and physical map for this chromosome.  相似文献   

10.
Mouse Niemann-Pick disease type C1 (npc1), formerly designated spm (sphingomyelinosis), is an autosomal recessive lipid storage disorder. We generated a high-resolution linkage map in the 2.24-cM npc1 critical region by typing eight polymorphic markers in 2322 meioses (948 of these were previously reported). A minimal set of overlapping yeast artificial chromosomes (YACs) had previously been assembled (Hsu and Erickson 2000). The YAC 313-B-8, which covered this whole region, has been used to construct cosmid libraries. Three cosmid contigs were built, and one of them contained the npc1 locus. Two (CA)n microsatellites were identified, and the one new one was characterized, from the YAC-derived cosmids. The most proximal cosmid contig overlaps with markers near twirler (Tw). Both the physical map and genetic linkage map have been integrated to study the recombination frequencies in this particular region of the mouse genome, and recombination suppression due to the heterozygous insertion of DNA was suggested. Received: 22 December 1999 / Accepted: 16 March 2000  相似文献   

11.
Isolation of a human DNA sequence which spans the fragile X   总被引:3,自引:0,他引:3       下载免费PDF全文
To identify the sequences involved in the expression of the fragile X and to characterize the molecular basis of the genetic lesion, we have constructed yeast artificial chromosomes (YACs) containing human DNA and have screened them with cloned DNA probes which map close to the fragile site at Xq27.3. We have isolated and partly characterized a YAC containing approximately 270 kb of human DNA from an X chromosome which expresses the fragile X. This sequence in a yeast artificial ring chromosome, XTY26, hybridizes to the two closest DNA markers, VK16 and Do33, which flank the fragile site. The human DNA sequence in XTY26 also spans the fragile site on chromosome in situ hybridization. When a restriction map of XTY26, derived by using infrequently cutting restriction enzymes, is compared with similar YAC maps derived from non-fragile-X patients, no large-scale differences are observed. This YAC, XTY26, may enable (a) the fragile site to be fully characterized at the molecular level and (b) the pathogenetic basis of the fragile-X syndrome to be determined.  相似文献   

12.
This study reports the isolation and characterization of seven highly polymorphic microsatellite loci in Chthamalus montagui (Crustacea, Cirripedia). The loci were isolated from a library constructed from genomic DNA enriched for CA repeats. The markers yielded three to 43 alleles per locus (mean 16.7) in samples averaging 49 individuals. Observed heterozygosity ranged from 0.08 to 0.58 (mean 0.39). These microsatellite loci will be valuable tools for population genetic studies of this species.  相似文献   

13.
Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease recently mapped to chromosome 12q close to the locus D12S84 by genetic linkage analysis. To generate additional genetic markers in the SCA2 region, we constructed a physical map of the region using yeast artificial chomosome (YAC), P1 artificial chromosome (PAC) and cosmid clones. The physical map was found to agree well with the genetic map. Three novel microsatellite markers were isolated and physically mapped. A novel approach to isolate CAG repeats directly from YAC DNAs is described. Received: 25 January 1995 / Revised: 26 September 1995  相似文献   

14.
The locus of the autosomal recessive disorder ataxia-telangiectasia (A-T) has been assigned by linkage analysis with biallelic markers to a 4-Mb interval on chromosome 11q22-23, between GRIA4 and D11S1897. We have undertaken to saturate the A-T region with highly polymorphic microsatellite markers. To this end, we have identified seven new polymorphic CA-repeats in this region, and have mapped to it five new markers generated by Genethon and the Cooperative Human Linkage Center. These markers are in addition to 12 others that we have previously mapped or generated at the A-T locus. All 24 markers have been integrated into a high-density microsatellite map spanning some 6 Mb DNA. This map, which contains the A-T locus and flanking sequences, allows the construction of extensive, highly informative haplotypes.  相似文献   

15.
DNA microsatellites are ubiquitously present in eukaryotic genomes [30] and represent a vast source of highly informative markers [30, 33, 34, 2]. We describe in this article a (GGC)n microsatellite which is widely distributed in eukaryotic genomes. Using polymerase chain reaction (PCR) techniques and DNA sequencing, we demonstrated for the first time in plant species that a (GGC)n microsatellite locus is moderately polymorphic. Six alleles are present at this locus in rice and length polymorphisms are caused by variation in the number of tandem GGC repeats. By scoring a backcross mapping population, we were able to demonstrate that this locus is stably inherited and does not link to any known RFLP markers on the rice RFLP map. Our results suggest that DNA microsatellites should be useful in plants for construction of genetic linkage maps, extension of the existing genetic linkage maps, linkage analysis of disease and pest resistance genes, and the study of population genetics.  相似文献   

16.
A polymorphic CA repeat (locus name DXS1178) was isolated from a 1-megabase YAC (OTCC) containing the OTC gene, located at Xp21.1. However, amplification in human-rodent hybrid cells and segregation analysis in three CEPH families mapped the DXS1178 locus at Xq13. The mapping ambiguity is apparently caused by the chimeric nature of the OTCC YAC clone.  相似文献   

17.
This study reports the isolation and characterization of seven highly polymorphic microsatellite loci in Silene vulgaris (Caryophyllaceae). The loci were isolated from two libraries constructed from genomic DNA enriched for CA and GA repeats. These markers yielded nine to 40 alleles per locus (mean 22.1) in a survey of 45 individuals from a single population located in the western Swiss Alps. Average observed heterozygosity ranged from 16.2 to 77.4%. These microsatellite loci should be valuable tools for studying fine‐scale genetic structure.  相似文献   

18.
TNF-alpha and lymphotoxin (LT, TNF-beta) genes are tandemly arranged and map within the MHC centromeric to HLA-B and telomeric to the class III genes. Both cytokines encoded by these genes are potent immunomodulators. On the other hand, some MHC-linked autoimmune diseases are characterized by abnormal levels of their expression or inducibility. A search for the putative disease-associated TNF/LT alleles depends on the informative genetic markers at the TNF locus. Previously, a low degree of genetic polymorphism at the human TNF locus has been reported, mostly bi-allelic RFLP. To localize and define additional polymorphic markers, we probed the collection of genomic clones with synthetic tandemly repeated dinucleotides, corresponding to the sequences known as microsatellites. We mapped and characterized three (TC/GA) and one (AC/GT) repeats within cloned 40-kb DNA comprising the human TNF locus. Using a polymerase chain reaction-based technique, we analyzed three of these four microsatellites and observed their length of polymorphism. Using DNA samples from blood donors, two families, and three human cell lines, we detected 13 distinct alleles of the AC/GT microsatellite neighboring human TNF genes. The variability was further increased by simultaneous analysis of the second linked microsatellite. This linked TC/GA repeat showed at least five alleles, whereas the least polymorphic TC/GA repeat located in the first intron of LT (TNF-beta) gene had two alleles. TNF alleles defined by microsatellites were stably inherited and segregated in the Mendelian way. Therefore, we describe thus far the most informative level of DNA sequence polymorphism in this part of human MHC. We propose a nomenclature for microsatellite tagged LT/TNF alleles based on their size and variability, which could also be extended to include RFLP and other not yet identified polymorphic markers. Microsatellite tagged polymorphism described here can be used in systematic linkage studies of HLA-associated diseases.  相似文献   

19.
Dinucleotide CA repeat sequences in the human genome have been shown to be highly polymorphic due to variation in the length of the repeat-containing segment. Therefore, these markers can serve as anchor loci in the construction of a high-resolution genetic map of the human genome. In this study, we improved the efficiency of typing dinucleotide repeats using multiplex polymerase chain reaction (PCR). Dinucleotide repeat sequences of four previously identified markers (DXS453, DXS458, DXS454, and DXS424) on the long arm of the X chromosome were simultaneously amplified in a single PCR reaction. This multiplex PCR was applied to genotype individuals from the 40 CEPH reference families, and the genotypic data were used to determine the map position of the four loci with respect to eight reference markers in the Xq region by linkage analysis.  相似文献   

20.
Fifty microsatellite markers for Japanese quail   总被引:2,自引:0,他引:2  
A Japanese quail genomic library enriched for (CA/GT)n simple sequence repeats was screened and positive clones were sequenced. Fifty original microsatellite sequences were isolated that consisted mainly of perfect repeats of the dinucleotide (CA/GT)n motif and a corresponding number of polymerase chain reaction (PCR) primer pairs complementary to unique DNA sequences flanking the microsatellite repeats were designed to detect the repeats. Forty-six percent (23 of 50) of the markers revealed polymorphism in two unrelated quail individuals (one male and one female) randomly sampled from a population of wild quail origin. All 50 primer pairs were tested in the PCR for their ability to amplify chicken genomic DNA. Amplification products were obtained for 14 (28.0%) of the markers at the annealing temperature optimized for quail. These results provide an opportunity to begin characterizing the quail genome for the development of a genetic map for this economically valuable species and the eventual construction of a comparative genetic map in Phasianidae, which comprises a number of agriculturally important species of poultry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号