首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic mapping showed that the rice blast avirulence gene AVR-Pita is tightly linked to a telomere on chromosome 3 in the plant pathogenic fungus Magnaporthe grisea. AVR-Pita corresponds in gene-for-gene fashion to the disease resistance (R) gene Pi-ta. Analysis of spontaneous avr-pita(-) mutants indicated that the gene is located in a telomeric 6.5-kb BglII restriction fragment. Cloning and DNA sequencing led to the identification of a candidate gene with features typical of metalloproteases. This gene is located entirely within the most distal 1.5 kb of the chromosome. When introduced into virulent rice pathogens, the cloned gene specifically confers avirulence toward rice cultivars that contain Pi-ta. Frequent spontaneous loss of AVR-Pita appears to be the result of its telomeric location. Diverse mutations in AVR-Pita, including point mutations, insertions, and deletions, permit the fungus to avoid triggering resistance responses mediated by Pi-ta. A point mutation in the protease consensus sequence abolishes the AVR-Pita avirulence function.  相似文献   

2.
The avirulence (AVR) gene AVR-Pita in Magnaporthe oryzae prevents the fungus from infecting rice cultivars containing the resistance gene Pi-ta. A survey of isolates of the M. grisea species complex from diverse hosts showed that AVR-Pita is a member of a gene family, which led us to rename it to AVR-Pita1. Avirulence function, distribution, and genomic context of two other members, named AVR-Pita2 and AVR-Pita3, were characterized. AVR-Pita2, but not AVR-Pita3, was functional as an AVR gene corresponding to Pi-ta. The AVR-Pita1 and AVR-Pita2 genes were present in isolates of both M. oryzae and M. grisea, whereas the AVR-Pita3 gene was present only in isolates of M. oryzae. Orthologues of members of the AVR-Pita family could not be found in any fungal species sequenced to date, suggesting that the gene family may be unique to the M. grisea species complex. The genomic context of its members was analyzed in eight strains. The AVR-Pita1 and AVR-Pita2 genes in some isolates appeared to be located near telomeres and flanked by diverse repetitive DNA elements, suggesting that frequent deletion or amplification of these genes within the M. grisea species complex might have resulted from recombination mediated by repetitive DNA elements.  相似文献   

3.
The avirulence gene AVR-Pita of Magnaporthe oryzae determines the efficacy of the resistance gene Pi-ta in rice. The structures of the AVR-Pita alleles in 39 US isolates of M. oryzae were analyzed using polymerase chain reaction. A series of allele-specific primers were developed from the AVR-Pita gene to examine the presence of AVR-Pita. Orthologous alleles of the AVR-Pita gene were amplified from avirulent isolates. Sequence analysis of five alleles revealed three introns at identical positions in the AVR-Pita gene. All five alleles were predicted to encode metalloprotease proteins highly similar to the AVR-Pita protein. In contrast, the same regions of the AVR-Pita alleles were not amplified in the most virulent isolates, and significant variations of DNA sequence at the AVR-Pita allele were verified by Southern blot analysis. A Pot3 transposon was identified in the DNA region encoding the putative protease motif of the AVR-Pita protein from a field isolate B2 collected from a Pi-ta-containing cultivar Banks. These findings show that transposons can contribute to instability of AVR-Pita and is one molecular mechanism for defeating resistance genes in rice cultivar Banks.  相似文献   

4.
稻瘟病菌无毒基因研究进展   总被引:4,自引:0,他引:4  
水稻与稻瘟病菌之间的特异互作符合基因对基因假说。本文将从稻瘟病菌与水稻抗病基因间的互作特点、稻瘟病菌的分子标记、已克隆的稻瘟病菌无毒基因三个方面对稻瘟病菌无毒基因研究进展作简要介绍  相似文献   

5.
The avirulence gene AVR-Pita in Magnaporthe grisea prevents the fungus from infecting rice cultivars carrying the disease resistance gene Pi-ta. Insertion of Pot3 transposon into the promoter of AVR-Pita caused the gain of virulence toward Yashiro-mochi, a rice cultivar containing Pi-ta, which demonstrated the ability of Pot3 to move within the M. grisea genome. The appearance of Pot3 in M. grisea seems to predate the diversification of various host-specific forms of the fungus.  相似文献   

6.
The significance of AVR1-CO39, an avirulence gene of the blast fungus corresponding to Pi-CO39(t) in rice cultivars, during the evolution and differentiation of the blast fungus was evaluated by studying its function and distribution in Pyricularia spp. When the presence or absence of AVR1-CO39 was plotted on a dendrogram constructed from ribosomal DNA sequences, a perfect parallelism was observed between its distribution and the phylogeny of Pyricularia isolates. AVR1-CO39 homologs were exclusively present in one species, Pyricularia oryzae, suggesting that AVR1-CO39 appeared during the early stage of evolution of P. oryzae. Transformation assays showed that all the cloned homologs tested are functional as an avirulence gene, indicating that selection has maintained their function. Nevertheless, Oryza isolates (isolates virulent on Oryza spp.) in P. oryzae were exceptionally noncarriers of AVR1-CO39. All Oryza isolates suffered from one of the two types of known rearrangements at the Avr1-CO39 locus (i.e., G type and J type). These types were congruous to the two major lineages of Oryza isolates from Japan determined by MGR586 and MAGGY. These results indicate that AVR1-CO39 was lost during the early stage of evolution of the Oryza-specific subgroup of P. oryzae. Interestingly, its corresponding resistance gene, Pi-CO39(t), is not widely distributed in Oryza spp.  相似文献   

7.
The interaction between rice, Oryza sativa, and rice blast fungus, Magnaporthe oryzae, is triggered by an interaction between the protein products of the host resistant gene, and the pathogen avirulence gene. This interaction follows the ‘gene-for-gene' concept. The resistant gene has effectively protected rice plants from rice blast infection. However, the resistant genes usually break down several years after the release of the resistant rice varieties because the fungus has evolved to new races. The objective of this study is to investigate the nucleotide sequence variation of the AVR-Pita1 gene that influences the adaption of rice blast fungus to overcome the resistant gene, Pi-ta. Thirty rice blast fungus isolates were collected in 2005 and 2010 from infected rice plants in northern and northeastern Thailand. The nucleotide sequences of AVR-Pita1 were amplified and analyzed. Phylogenetic analysis was conducted using the MEGA 5.0 program. The results showed a high level of nucleotide sequence polymorphisms and the positive genetic selection pressure in Thai rice blast isolates. The details of sequence variation analysis were described in this article. The information from this study can be used for rice blast resistant breeding program in the future.  相似文献   

8.
M Xue  J Yang  Z Li  S Hu  N Yao  RA Dean  W Zhao  M Shen  H Zhang  C Li  L Liu  L Cao  X Xu  Y Xing  T Hsiang  Z Zhang  JR Xu  YL Peng 《PLoS genetics》2012,8(8):e1002869
Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements, but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are important factors in genome variation of the rice blast fungus.  相似文献   

9.
稻瘟病是世界上影响水稻(Oryza sativa)粮食生产的主要病害之一, 抗病基因的发掘与利用是抗病育种的基础和核心。随着寄主水稻和病原菌稻瘟病菌(Magnaporthe oryzae)基因组测序和基因注释的完成, 水稻和稻瘟病菌的互作体系成为研究植物与真菌互作的模式系统。该文对稻瘟病抗病基因的遗传、定位、克隆及育种利用进行概述, 并通过生物信息学分析方法, 探讨了水稻全基因组中NBS-LRR类抗病基因在水稻12条染色体上的分布情况, 同时对稻瘟病菌无毒基因的鉴定及无毒蛋白与抗病蛋白的互作进行初步分析。最后对稻瘟病抗病基因研究存在的问题进行分析并展望了未来的研究方向, 以期为水稻抗稻瘟病育种发展和抗病机制的深入理解提供参考。  相似文献   

10.
The rice blast resistance (R) gene Pi-ta mediates gene-for-gene resistance against strains of the fungus Magnaporthe grisea that express avirulent alleles of AVR-Pita. Using a map-based cloning strategy, we cloned Pi-ta, which is linked to the centromere of chromosome 12. Pi-ta encodes a predicted 928-amino acid cytoplasmic receptor with a centrally localized nucleotide binding site. A single-copy gene, Pi-ta shows low constitutive expression in both resistant and susceptible rice. Susceptible rice varieties contain pi-ta(-) alleles encoding predicted proteins that share a single amino acid difference relative to the Pi-ta resistance protein: serine instead of alanine at position 918. Transient expression in rice cells of a Pi-ta(+) R gene together with AVR-Pita(+) induces a resistance response. No resistance response is induced in transient assays that use a naturally occurring pi-ta(-) allele differing only by the serine at position 918. Rice varieties reported to have the linked Pi-ta(2) gene contain Pi-ta plus at least one other R gene, potentially explaining the broadened resistance spectrum of Pi-ta(2) relative to Pi-ta. Molecular cloning of the AVR-Pita and Pi-ta genes will aid in deployment of R genes for effective genetic control of rice blast disease.  相似文献   

11.
Generally, Magnaporthe oryzae , the causal agent of rice blast disease, is considered to be a typical leaf-infecting plant pathogenic fungus. However, it was recently reported that M. oryzae shares many characteristics in common with root-infecting pathogens and indeed was able to infect roots. Here, we report on studies testing for the capacity of roots of rice and barley to resist infections with M. oryzae . We established that roots of rice plants were colonized by M. oryzae in a manner which is different from the gene-for-gene specificity seen in leaves for the same genotypes. Furthermore, treatment of rice seedlings with benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), a chemical that protects leaves effectively against blast by conditioning acquired resistance, was not able to prevent colonization of roots by M. oryzae although a reduction in disease levels was observed. Moreover, BTH was not able to protect barley roots against infection with M. oryzae . Taken together, our results suggest that although roots show intrinsic variation in their ability to resist colonization by M. oryzae , neither gene-for-gene incompatibility nor aquired resistance are as effective at blocking the pathogen as they are in leaves.  相似文献   

12.
稻瘟菌无毒基因研究进展   总被引:7,自引:1,他引:6  
无毒基因编码的产物激发病原物与植物特异性相互作用。水稻与稻瘟菌之间的特异互作符合“基因对基因”关系。从研究稻瘟菌无毒基因的意义、已鉴定和克隆的稻瘟菌无毒基因、稻瘟菌无毒基因与其抗病基因的互作特点等几个方面,对稻瘟菌无毒基因研究进展作了简要评述 。  相似文献   

13.
【目的】鉴定湖南省桃江病圃稻瘟病菌无毒基因型,为合理搭配种植湖南省水稻抗瘟品种和抗病育种提供依据。【方法】在湖南桃江病圃采集水稻品种"丽江新团黑谷"(LTH)稻瘟菌病样,用单孢分离法分离稻瘟病菌单孢并纯化获得单孢菌株,用针刺离体法将菌株接种到以"LTH"为轮回亲本培育而成的24个含单抗瘟基因的水稻5叶期第5叶片上,对供试菌株进行无毒基因鉴定,并应用联合致病性系数和联合抗病性系数分析抗瘟基因组合间的互作。【结果】供试92个稻瘟病单孢菌株含有全部的24个无毒基因,对24个已知含单抗瘟基因的水稻材料表现出不同程度的毒力水平,含水稻抗瘟基因Pi-20对供试菌株抗菌频率最高,达54.35%;通过联合致病性系数和联合抗病性系数分析抗瘟基因组合间的互作,结果表明最佳搭配组合为Pi-20×Pi-k~s(RAC=0.28,PAC=0.23)。【结论】湖南省桃江病圃稻瘟病菌致病力较强,24个抗瘟基因多已感病化,含抗性基因Pi-20与Pi-k、Pi-k~s、Pi-3组合的水稻品种目前可在湖南省推广利用,但需研究引进新的抗瘟基因。  相似文献   

14.
国外引进水稻种质资源的稻瘟病抗性基因检测与评价   总被引:2,自引:0,他引:2  
为了筛选出福建省水稻稻瘟病重发区育种中可利用的新抗性资源,在福建省上杭县对156份外引水稻种质资源进行了2年田间自然诱发鉴定,并对Pi2、Pi9、Pi5、Pi54、Pikm、Pita、Pia和Pib等8个稻瘟病抗性基因做了分子检测。结果表明:156份资源对苗瘟、叶瘟、穗颈瘟和综合抗性表现抗病的分别有10份、14份、29份和26份,且苗瘟抗性级别与叶瘟抗性级别(r=0.816,P<0.01)、苗瘟抗性级别与穗颈瘟抗性级别(r=0.347,P<0.01)、以及叶瘟抗性级别与穗颈瘟抗性级别(r=0.344,P<0.01),均呈极显著正相关。分子标记检测到携带稻瘟病抗性基因Pi9、Pi2、Pi54、Pikm、Pi5、Pib、Pia和Pita的水稻资源分别有1、6、20、22、37、88、101和106份,其中携带稻瘟病抗性基因Pi9和Pi2的水稻资源的抗性表现较好,表现抗病的超过60%,携带其他稻瘟病抗性基因的水稻资源表现抗病的均在50%以下;水稻资源携带0~6个稻瘟病抗性基因,随着携带抗性基因数目增加,抗病率呈上升趋势,综合抗性等级呈下降趋势。进一步研究发现,携带Pi9+Pi5+Pikm+Pia、Pi5+Pib+Pita+Pikm+Pia和Pi2+Pi54+Pib+Pita+Pikm+Pia等3个基因型的水稻资源,稻瘟病抗性较好。最后,筛选了8份稻瘟病抗性较好的材料,提供育种者参考、利用。  相似文献   

15.
Rice expressing the Pi-ta gene is resistant to strains of the rice blast fungus, Magnaporthe grisea, expressing AVR-Pita in a gene-for-gene relationship. Pi-ta encodes a putative cytoplasmic receptor with a centrally localized nucleotide-binding site and leucine-rich domain (LRD) at the C-terminus. AVR-Pita is predicted to encode a metalloprotease with an N-terminal secretory signal and pro-protein sequences. AVR-Pita(176) lacks the secretory and pro-protein sequences. We report here that transient expression of AVR-Pita(176) inside plant cells results in a Pi-ta-dependent resistance response. AVR-Pita(176) protein is shown to bind specifically to the LRD of the Pi-ta protein, both in the yeast two-hybrid system and in an in vitro binding assay. Single amino acid substitutions in the Pi-ta LRD or in the AVR-Pita(176) protease motif that result in loss of resistance in the plant also disrupt the physical interaction, both in yeast and in vitro. These data suggest that the AVR-Pita(176) protein binds directly to the Pi-ta LRD region inside the plant cell to initiate a Pi-ta-mediated defense response.  相似文献   

16.
稻瘟病菌AVR-pita等位基因的遗传多样性研究(简报)   总被引:1,自引:0,他引:1  
由真菌Magnaporthe grisea引起的稻瘟病是我国水稻三大病害之一.也是遍及世界各水稻产区的重要病害.每年均有不同程度的发生.流行年份一般减产10%-20%.严重的达40%-50%.局部田块甚至颗粒无收。稻瘟病菌在进化过程中形成了遗传多样性和毒性易变的特性.是水稻品种抗病性容易丧失的主要原因之一。对稻瘟病系统研究的证据表明.水稻与稻瘟病菌之间的互作.符合“基因对基因”假说。也就是说.水稻有一抗病基因,稻瘟病菌中就会有相对应的无毒基因.  相似文献   

17.
Eighty-three isolates of the rice blast fungus (Pyricularia oryzae) were tested with respect to genetic diversity and the possibility of race differentiation by electrophoresis. The fungus was genetically very heterogeneous. The isolates were differentiated into 6 races by pathogenicity on race differential varieties. There was little correlation between pathogenicity and zymogram types of one particular enzyme such as esterase, phosphatase or catalase. The isolates were divided into 14 groups by the combination of the zymogram types of the three enzymes. The isolates in the same group showed similar pathogenicity. A new method is proposed which differentiates the blast fungus races by the combination of zymogram type of enzymes. The details, are discussed.  相似文献   

18.
辽宁地区水稻资源抗稻瘟病基因的检测分析   总被引:1,自引:0,他引:1  
为了明确辽宁地区水稻资源中抗稻瘟病基因的分布情况及抗病效应,选取辽宁地区水稻资源176份,鉴定了抗稻瘟病基因pi21、Pi36、Pi37、Pita、Pid2、Pid3、Pi5及Pib在这些材料中的分布情况,并接种鉴定了这些材料对稻瘟病的抗性。结果表明:176份供试材料中,83份对稻瘟病表现抗病,栽培稻、杂草稻及农家种中抗病品种所占的比率分别为41.48%、1.14%及4.54%。抗稻瘟病基因pi21、Pi36和Pi37在所有参试材料中均未检测到,且分别有74份、49份、47份、52份及89份材料携带Pita、Pid2、Pid3、Pi5及Pib的抗病等位基因。抗病基因绝大部分分布在栽培种中,农家种和杂草稻中分布较少。不含有抗稻瘟病基因和只携带单个抗病基因的材料对稻瘟病的抗性均较差,而抗病基因聚合可不同程度提高材料的抗性。经检测,不含有本试验鉴定的pi21等8个已克隆抗病基因的材料共32份,其中表现抗病的占21.87%;只携带1个抗稻瘟病基因的材料为52份,表现抗病的占17.31%;携带2个抗稻瘟病基因的材料为39份,表现抗病的占69.23%,其中以携带Pita+Pi5的材料最多(14份),且均表现抗病;携带3个抗稻瘟病基因的材料为31份,表现抗病的占77.42%,以携带Pita+Pid3+Pi5的材料抗性最强;携带4个抗稻瘟病基因的水稻材料22份,表现抗病的占72.73%,携带5个抗病基因的水稻材料未检测到。  相似文献   

19.
Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice blast fungus Magnaporthe oryzae overcomes this first line of plant defense by secreting an effector protein, Secreted LysM Protein1 (Slp1), during invasion of new rice cells. We demonstrate that Slp1 accumulates at the interface between the fungal cell wall and the rice plasma membrane, can bind to chitin, and is able to suppress chitin-induced plant immune responses, including generation of reactive oxygen species and plant defense gene expression. Furthermore, we show that Slp1 competes with CEBiP for binding of chitin oligosaccharides. Slp1 is required by M. oryzae for full virulence and exerts a significant effect on tissue invasion and disease lesion expansion. By contrast, gene silencing of CEBiP in rice allows M. oryzae to cause rice blast disease in the absence of Slp1. We propose that Slp1 sequesters chitin oligosaccharides to prevent PAMP-triggered immunity in rice, thereby facilitating rapid spread of the fungus within host tissue.  相似文献   

20.
Races of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice, interact with cultivars of rice in a gene-for-gene specific manner. Multiple DNA fragments of various sizes from all strains of X. o. pv. oryzae hybridized with avrBs3, an avirulence gene from Xanthomonas campestris pv. vesicatoria, in Southern blots; this suggests the presence of several homologs and possibly a gene family. A genomic library of a race 2 strain of X. o. pv. oryzae, which is avirulent on rice cultivars carrying resistance genes xa-5, Xa-7, and Xa-10, was constructed. Six library clones, which hybridized to avrBs3, altered the interaction phenotype with rice cultivars carrying either xa-5, Xa-7, or Xa-10 when present in a virulent race 6 strain. Two avirulence genes, avrXa7 and avrXa10, which correspond to resistance genes Xa-7 and Xa-10, respectively, were identified and partially characterized from the hybridizing clones. On the basis of transposon insertion mutagenesis, sequence homology, restriction mapping, and the presence of a repeated sequence, both genes are homologs of avirulence genes from dicot xanthomonad pathogens. Two BamHI fragments that are homologous to avrBs3 and correspond to avrXa7 and avrXa10 contain a different number of copies of a 102-bp direct repeat. The DNA sequence of avrXa10 is nearly identical to avrBs3. We suggest that avrXa7 and avrXa10 are members of an avirulence gene family from xanthomonads that control the elicitation of resistance in mono- and dicotyledonous plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号