首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. The application of in situ hybridization histochemistry to the study of neuropeptide gene expression in human brain postmortem tissues is reviewed. We focus on neuropeptides preferentially expressed in hypothalamus and basal ganglia. 32P-labeled oligonucleotides were used as hybridization probes. 2. Autoradiography combined with computerized image analysis was used to visualize and quantify the hybridization signal. 3. Several criteria were considered in order to ascertain the specificity of the signal, including Northern analysis, use of heterologous probes, competition assays, and thermal stability of the hybrids. 4. In control human striatum high levels of hybridization signal were observed for somatostatin, neuropeptide Y, and preproenkephalin A mRNAs. In contrast, no detectable signal was observed with the cholecystokinin, arginine-vasopressin, and oxytocin probes in this area. In the hypothalamus high levels of oxytocin and arginine-vasopressin mRNAs were visualized in several nuclei. Preproenkephalin A and somatostatin mRNAs were also observed in this region, while cholecystokinin mRNA was not detected. 5. No significant correlations were found between the density of the hybridization signal and parameters such as postmortem delay, age, and gender in the population studied. 6. Finally, alterations of mRNA levels for some of these peptides were found in Parkinson's disease and Huntington's chorea striatal tissues. 7. These results show that in situ hybridization histochemistry can be used to examine at the microscopic level neuropeptide gene expression in postmortem materials.  相似文献   

3.
1. In situ hybridization histochemical techniques in combination with immunocytochemistry and acetylcholinesterase (AChE) histochemistry were used to study the colocalization of messenger RNA (mRNA) encoding the neuropeptide substance P (SP) in cholinergic cells of the laterodorsal tegmental nucleus (LDT) of the rat pontine brain stem. 2. Alternate serial sections were hybridized with a 48-base, 35S-labeled synthetic oligonucleotide probe encoding SP using in situ hybridization histochemistry and processed either histochemically for AChE or immunocytochemically for choline acetyltransferase (ChAT). 3. In addition, serial section analysis was used to demonstrate the correlation between SP and SP mRNA in the same cells of the LDT. 4. These studies reveal that the cholinergic neurons of the LDT synthesize SP.  相似文献   

4.
3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) toxicity may cause region-specific changes in serotonergic mRNA expression due to acute serotonin (5-hydroxytryptamine; 5-HT) syndrome. This hypothesis can be tested using in situ hybridization to detect the serotonin 5-HT2A receptor gene htr2a. In the past, such procedures, utilizing radioactive riboprobe, were difficult because of the complicated workflow that needs several days to perform and the added difficulty that the technique required the use of fresh frozen tissues maintained in an RNase-free environment. Recently, the development of short oligonucleotide probes has simplified in situ hybridization procedures and allowed the use of paraformaldehyde-prefixed brain sections, which are more widely available in laboratories. Here, we describe a detailed protocol using non-radioactive oligonucleotide probes on the prefixed brain tissues. Hybridization probes used for this study include dapB (a bacterial gene coding for dihydrodipicolinate reductase), ppiB (a housekeeping gene coding for peptidylprolyl isomerase B), and htr2a (a serotonin gene coding for 5-HT2A receptors). This method is relatively simply, cheap, reproducible and requires less than two days to complete.  相似文献   

5.
6.
7.
8.
The antisense therapeutic strategy makes the assumption that sequence-specific hybridization of an oligonucleotide to its target can take place in living cells. The present work provides a new method for the detection of intracellular RNA molecules using in situ hybridization on living cells. The first step consisted in designing nonperturbant conditions for cell permeabilization using streptolysin O. In a second step, intracellular hybridization specificity was evaluated by incorporating various types of fluorescently labeled nucleic acid probes (plasmids, oligonucleotides). Due to its high expression level, the 28S ribosomal RNA was retained as a model. Results showed that: (1) no significant cell death was observed after permeabilization; (2) on living cells, 28S RNA specific probes provided bright nucleoli and low cytoplasmic signal; (3) control probes did not lead to significant fluorescent staining; and (4) comparison of signals obtained on living and fixed cells showed a colocalization of observed fluorescence. These results indicate the feasibility of specific hybridization of labeled nucleic acid probes under living conditions, after a simple and efficient permeabilization step. This new detection method is of interest for investigating the dynamics of distribution of various gene products in living cells, under normal or pathological conditions.Abbreviations PI propidium iodide - SLO streptolysin O  相似文献   

9.
The microbial communities of three different habitat types and from two sediment depths in the River Elbe were investigated by fluorescence in situ hybridization at various levels of complexity. Differences in the microbial community composition of free-flowing river water, water within the hyporheic interstitial and sediment-associated bacteria were quantitatively analyzed using domain- and group-specific oligonucleotide probes. Qualitative data on the presence/absence of specific bacterial taxa were gathered using genus- and species-specific probes. The complete data set was statistically processed by univariate statistical approaches, and two-dimensional ordinations of nonmetric multidimensional scaling. The analysis showed: (1) that the resolution of microbial community structures at microenvironments, habitats and locations can be regulated by targeted application of oligonucleotides on phylogenetic levels ranging from domains to species, and (2) that an extensive qualitative presence/absence analysis of multiparallel hybridization assays enables a fine-scale apportionment of spatial differences in microbial community structures that is robust against apparent limitations of fluorescence in situ hybridization such as false positive hybridization signals or inaccessibility of in situ oligonucleotide probes. A general model for the correlation of the phylogenetic depth of focus and the relative spatial resolution of microbial communities by fluorescence in situ hybridization is presented.  相似文献   

10.
【目的】以西方蜜蜂Apis mellifera工蜂肠道为例探究组织透明化技术--丙烯酰胺交联替换脂质透明硬化成像/免疫染色/原位杂交兼容组织水凝胶(clear lipid-exchanged acrylamide-hybridized rigid imaging/immunostaining/in situ hybridization-compatible tissue-hYdrogel, CLARITY)在昆虫组织上的应用,确定CLARITY与荧光原位杂交(FISH)相结合在昆虫肠道组织透明化中的适用性。【方法】依照CLARITY技术操作程序,用水凝胶固定西方蜜蜂肠道,并以被动方式透明化,再用靶向东方蜜蜂微孢子虫Nosema ceranae 16S rRNA带异硫氰酸荧光素(fluorescein isothiocyanate, FITC)标记和靶向真核细胞18S rRNA带Texas RED标记的寡核苷酸荧光探针进行肠道组织的荧光原位杂交,然后用DAPI(蓝色)进行细胞核复染,通过激光共聚焦显微镜观察透明化的染色组织。【结果】首次成功将西方蜜蜂肠道组织透明化。在激光共聚焦显微镜下,观察到马氏管的原始分布形态,以及东方蜜蜂微孢子虫在中肠末端分布更密集的空间分布特征,并实现了对肠道组织的3D重构。【结论】CLARITY能应用于蜜蜂肠道组织透明化,透明化组织能进行原位杂交和激光共聚焦观察。CLARITY和FISH相结合免除抗体制备和石蜡切片的麻烦,直观展示肠道内部的真实状态,为昆虫生理病理研究提供了一种可靠特异的标记方法。  相似文献   

11.
In situ hybridization is an important tool for analyzing gene expression and developing hypotheses about gene functions. The discovery of hundreds of microRNA (miRNA) genes in animals has provided new challenges for analyzing gene expression and functions. The small size of the mature miRNAs ( approximately 20-24 nucleotides in length) presents difficulties for conventional in situ hybridization methods. However, we have described a modified in situ hybridization method for detection of mammalian miRNAs in tissue sections, based upon the use of RNA oligonucleotide probes in combination with highly specific wash conditions. Here, we present detailed procedures for detection of miRNAs in tissue sections or cultured cells. The methods described can utilize either nonradioactive hapten-conjugated probes that are detected by enzyme-coupled antibodies, or radioactively labeled probes that are detected by autoradiography. The ability to visualize miRNA expression patterns in tissue sections provides an additional tool for the analyses of miRNA expression and function. In addition, the use of radioactively labeled probes should facilitate quantitative analyses of changes in miRNA gene expression.  相似文献   

12.
Since glucocorticoids have a role in maintaining the homeostatic status in fish, in the present paper mRNA expression (in situ hybridization) and tissue immunohistochemical localization of a glucocorticoid receptor (DlGR1) in several Dicentrarchus labrax organs are reported. Riboprobe and specific antibodies were prepared by using the DlGR1 that has been previously cloned and sequenced from peritoneal cavity leukocytes. Both mRNA and receptor were identified in head kidney, spleen, gills, intestine, heart and liver tissues. The functional roles of DlGR1 localization are discussed.  相似文献   

13.
14.
Fluorescence in situ hybridization (FISH) is a powerful technique that is used to detect and localize specific nucleic acid sequences in the cellular environment. In order to increase throughput, FISH can be combined with flow cytometry (flow-FISH) to enable the detection of targeted nucleic acid sequences in thousands of individual cells. As a result, flow-FISH offers a distinct advantage over lysate/ensemble-based nucleic acid detection methods because each cell is treated as an independent observation, thereby permitting stronger statistical and variance analyses. These attributes have prompted the use of FISH and flow-FISH methods in a number of different applications and the utility of these methods has been successfully demonstrated in telomere length determination, cellular identification and gene expression, monitoring viral multiplication in infected cells, and bacterial community analysis and enumeration. Traditionally, the specificity of FISH and flow-FISH methods has been imparted by DNA oligonucleotide probes. Recently however, the replacement of DNA oligonucleotide probes with nucleic acid analogs as FISH and flow-FISH probes has increased both the sensitivity and specificity of each technique due to the higher melting temperatures (T(m)) of these analogs for natural nucleic acids. Locked nucleic acid (LNA) probes are a type of nucleic acid analog that contain LNA nucleotides spiked throughout a DNA or RNA sequence. When coupled with flow-FISH, LNA probes have previously been shown to outperform conventional DNA probes and have been successfully used to detect eukaryotic mRNA and viral RNA in mammalian cells. Here we expand this capability and describe a LNA flow-FISH method which permits the specific detection of RNA in bacterial cells (Figure 1). Specifically, we are interested in the detection of small non-coding regulatory RNA (sRNA) which have garnered considerable interest in the past few years as they have been found to serve as key regulatory elements in many critical cellular processes. However, there are limited tools to study sRNAs and the challenges of detecting sRNA in bacterial cells is due in part to the relatively small size (typically 50-300 nucleotides in length) and low abundance of sRNA molecules as well as the general difficulty in working with smaller biological cells with varying cellular membranes. In this method, we describe fixation and permeabilzation conditions that preserve the structure of bacterial cells and permit the penetration of LNA probes as well as signal amplification steps which enable the specific detection of low abundance sRNA (Figure 2).  相似文献   

15.
16.
With the introduction of microwave pretreatment, the quality of nonradioactive in situ hybridization (NISH) using DNA probes on formalin fixed tissue has significantly improved. Even after microwave treatment, however, there are cases where NISH results remain unsatisfactory. Therefore, we tried to improve NISH by testing other buffer systems as alternatives to the citrate buffer that is routinely applied during microwave pretreatment. By using buffer systems originally designed for immunohistochemistry, we significantly improved our NISH results. Difficult tissue samples were more accessible to NISH using these alternative buffer systems and made the quantitative evaluation easier. These results may also be of interest for combined applications of NISH and immunohistochemistry.  相似文献   

17.
18.
19.
Two different strategies for scanning and screening of mutations in polymerase chain reaction (PCR) products by hybridization analysis are described, employing real-time biospecific interaction analysis (BIA) for detection. Real-time BIA was used to detect differences in hybridization responses between PCR products and different 17-mer oligonucleotide probes. For the analysis using a biosensor instrument, two different experimental formats were investigated based on immobilization of either biotinylated PCR products or oligonucleotide probes onto a sensor chip. Applied on the human tumour suppressor p53 gene, differences in hybridization levels for full-match and mismatch situations employing both formats allowed the detection of point mutations in exon 6 PCR products, derived from a breast tumour biopsy sample. In addition, a mutant sample sequence could be detected in a 50/50 background of wild type exon 6 sequence. The suitability of the different formats for obtaining a regenerable system and a high throughput of samples is discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Chromosome identification is essential in oyster genomic research. Fluorescence in situ hybridization (FISH) offers new opportunities for the identification of oyster chromosomes. It has been used to locate satellite DNAs, telomeres or ribosomal DNA sequences. However, regarding chromosome identification, no study has been conducted with simple sequence repeats (SSRs). FISH was used to probe the physical organization of three particular SSRs, (GGAT)(4), (GT)(7) and (TA)(10) onto metaphase chromosomes of the Pacific oyster, Crassostrea gigas. Hybridization signals were observed in all the SSR probes, but the distribution and intensity of signals varied according to the oligonucleotide repeat. The intercalary, centromeric and telomeric bands were observed along the chromosomes, and for each particular repeat every chromosome pair presented a similar pattern, allowing karyotypic analysis with all the SSRs tested. Our study is the first in mollusks to show the application of SSR in situ hybridization for chromosome identification and karyotyping. This technique can be a useful tool for oyster comparative studies and to understand genome organization in different oyster taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号