首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Alcohol dehydrogenase (ADH) activity in plants is generally associated with glycolytic fermentation, which facilitates cell survival during episodes of low-oxygen stress in water-logged roots as well as chronically hypoxic regions surrounding the vascular core. Work with tobacco and potato has implicated ADH activity in additional metabolic roles, including aerobic fermentation, acetaldehyde detoxification and carbon reutilization. Here a combination of approaches has been used to examine tissue-specific patterns of Adh gene expression in order to provide insight into the potential roles of alcohol dehydrogenases, using Petunia hybrida, a solanaceous species with well-characterized genetics. A reporter-gene study, relying on the promoters of Adh1 and Adh2 to drive expression of the gene for a green fluorescent protein derivative, mgfp5, revealed unexpectedly complex patterns of GFP fluorescence in floral tissues, particularly the stigma, style and nectary. Results of GC-MS analysis suggest the association of ADH with production of aromatic compounds in the nectary. Overall the results demonstrate selective recruitment of Adh gene family members in tissues and organs associated with diverse ADH functions.  相似文献   

2.
Parkinson's disease (PD) is a heterogeneous movement disorder characterized by progressive degeneration of dopamine neurons in substantia nigra. We have previously presented genetic evidence for the possible involvement of alcohol and aldehyde dehydrogenases (ADH; ALDH) by identifying genetic variants in ADH1C and ADH4 that associate with PD. The absence of the corresponding mRNA species in the brain led us to the hypothesis that one cause of PD could be defects in the defense systems against toxic aldehydes in the gastrointestinal tract. We investigated cellular expression of Adh1, Adh3, Adh4 and Aldh1 mRNA along the rodent GI tract. Using oligonucleotide in situ hybridization probes, we were able to resolve the specific distribution patterns of closely related members of the ADH family. In both mice and rats, Adh4 is transcribed in the epithelium of tongue, esophagus and stomach, whereas Adh1 was active from stomach to rectum in mice, and in duodenum, colon and rectum in rats. Adh1 and Adh4 mRNAs were present in the mouse gastric mucosa in nonoverlapping patterns, with Adh1 in the gastric glands and Adh4 in the gastric pits. Aldh1 was found in epithelial cells from tongue to jejunum in rats and from esophagus to colon in mice. Adh3 hybridization revealed low mRNA levels in all tissues investigated. The distribution and known physiological functions of the investigated ADHs and Aldh1 are compatible with a role in a defense system, protecting against alcohols, aldehydes and formaldehydes as well as being involved in retinoid metabolism.  相似文献   

3.
Expression of alcohol dehydrogenase in rice embryos under anoxia   总被引:2,自引:0,他引:2  
Summary Alcohol dehydrogenase (ADH) activity was present in roots and shoots of 48-h rice embryos and rose in response to anoxia. The increase was accompanied by changes in the ADH isozyme pattern. Translatable levels of mRNA for two ADH peptides increases as early as 1 h after the beginning of anoxic treatment. Adh mRNA was detected in aerobically grown rice embryos by hybridization to maize Adh1 cDNA: its level increased significantly after 3 h of anoxia.  相似文献   

4.
Alcohol and aldehyde dehydrogenases (ADHs and ALDHs) may be of interest in the pathology of Parkinson's disease (PD) because of their role in protection against toxins and in retinoid metabolism, which is required for growth and development of the mesencephalic dopamine system. In the present study, the spatial and temporal expression patterns of Adh1, Adh3, Adh4, and Aldh1 mRNAs in embryonic C57BL/6 mice (E9.5-E19.5) and Sprague-Dawley rats (E12.5-P0) have been investigated by using radioactive oligonucleotide in situ hybridization. High expression of Aldh1 mRNA was found in the developing mesencephalic dopamine neurons of both mice and rats. Expression of Adh1 and Adh4 mRNAs was observed in adrenal cortex and olfactory epithelium in mice. Additionally, Adh1 was expressed in epidermis, liver, conjunctival, and intestinal epithelium. In rat embryos, expression was less extensive, with Adh1 mRNA being found in liver and intestines. Adh3 expression was ubiquitous in both mouse and rat embryos, suggesting a housekeeping function of the gene. Consistent with previous studies in adult rats and mice, our data suggest that Adh3 is the only ADH class present in rodent brain. Adh and Aldh gene activity in mouse and rat embryos indicate the possible involvement of the respective enzymes in retinoid metabolism and participation in defense against toxic insults, including those that may be involved in the pathogenesis of PD. This work was supported by grants from the Swedish Research Council, the Swedish Parkinson Foundation, the Swedish Brain Foundation, Karolinska Institutet funds, AstraZeneca, and the US Public Health Service.  相似文献   

5.
Diverse patterns of tissue-specific expression of alcohol dehydrogenase (ADH) among species of the grimshawi subgroup of Hawaiian picture-winged Drosophila suggests control by complex or multiple, independently acting regulatory elements. These elements act by controlling Adh mRNA accumulation in individual tissue types. Restriction mapping of the Adh loci from these species reveals several insertion/deletion differences, one of which lies just outside the 5' end of the structural sequences and correlates with differences in larval patterns of ADH expression. No tissue-specific rearrangement of Adh sequences was observed.  相似文献   

6.
7.
Alcohol dehydrogenase (ADH) is expressed in a complex temporal and spatial pattern from tandem promoters (proximal and distal) in Drosophila melanogaster, and from two closely linked genes (Adh-1 and Adh-2) in D. mulleri. The expression patterns of Adh-1 and the proximal promoter, and Adh-2 and the distal promoter are similar, but not identical. We show that the mulleri Adh genes are appropriately expressed when introduced into the melanogaster genome, indicating that the cis- and trans-acting elements which regulate the corresponding promoters are functionally equivalent in the two species. By analyzing the expression of in vitro generated mutants of the mulleri Adh locus, we define at least three regulatory regions of the mulleri Adh genes and show that different control elements mediate the expression of Adh in different tissues.  相似文献   

8.
We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.  相似文献   

9.
The alcohol dehydrogenase class 3 enzyme (ADH3) is the presumed ancestral form of the medium-chain dehydrogenase-reductase ADH family. This enzyme has been involved in formaldehyde and nitric oxide metabolism of a variety of deuterostomes and ecdysozoan protostomes. We have now characterized the structure and expression of the Adh3 gene in the lophotrochozoan Schmidtea mediterranea, a freshwater planarian. The planarian gene expands over 8.7 kb and is organized into 7 exons. The 1340 bp long Adh3cDNA contains a 1137 bp open reading frame corresponding to a deduced protein of 379 amino acids. The protein sequence is consistent with that expected for a typical class III enzyme. Twenty out of the twenty-two amino acid positions associated with enzymatic roles are strictly preserved, which suggests that the enzymatic capabilities have been conserved. In situ hybridization experiments show that Adh3 is expressed along the intestine of S. mediterranea specimens. This is consistent with the pattern observed in invertebrates and in contrast with the widespread expression of vertebrate Adh3. The comparative study across bilateria, which now includes a lophotrochozoan representative, further supports the idea that the urbilaterian Adh3 ancestor showed an intron-rich architecture and tissue-specific expression, and strengthens the view that widespread expression of Adh3 was a vertebrate innovation.  相似文献   

10.
Insertion of the maize transposable element Mu-1 into the first intron of the alcohol dehydrogenase locus (Adh1) of maize produced mutant Adh1-S3034 with 40% of the wild-type level of protein and mRNA. Continued instability at this locus resulted in secondary mutations with lower levels of protein expression. One of these, Adh1-S3034a, has no detectable ADH1 expression. This paper describes the precise nature of the changes in the Adh1 gene that gave rise to the S3034a allele. The Mu-1 element is still present in the mutant, but Adh1 sequences immediately adjacent to the element are deleted. The deletion starts precisely at the Mu-1 insertion site and extends 74 bp leftward removing part of the first intron, the intron:exon junction and 2 bp of the eleventh amino acid codon in the first exon of the gene. Tests for reversion within the somatic tissue of plants show that mutant S3034a, unlike its progenitor, is stably null for ADH1 activity.  相似文献   

11.
To analyze Drosophila alcohol dehydrogenase gene (Adh) expression and tissue distribution at various developmental stages, we devised several immunochemical techniques making use of monoclonal antibodies against Drosophila alcohol dehydrogenase (ADH), which had been obtained previously. We here report their application to analyze the expression of Adh in a wild-type strain of D. melanogaster. s-ELISA tests were performed to evaluate fluctuations in ADH content and specific activity during development in individual organs as well as in whole individuals. In all cases, ADH specific activity appeared to be quite constant, which implies that variations in enzyme activity reflect differences in protein content. Immunoblottings of crude homogenates revealed immunoreactive low relative molecular mass peptides in addition to the 27 KD monomeric band, showing a conserved banding pattern in different organs and developmental stages. Immunohistochemical assays on whole organs were used to analyze the general pattern of ADH distribution. Immunoperoxidase staining of cryosections proved to be of crucial relevance, as it yielded full details of the tissue localization of ADH within the ADH-positive organs. We have shown not only that ADH displays a specific distribution in some organs but also that the enzyme is restricted to certain cell types.  相似文献   

12.
13.
14.
Low-temperature stress was shown to cause a rapid increase in steady-state levels of alcohol dehydrogenase-1 message (Adh1) and protein activity (ADH1) in maize (Zea mays) (B37N, A188) and rice (Oryza sativa) (Taipei 309, Calmochi 101) seedlings. Maize roots and rice shoots and roots from 7-day seedlings shifted to low temperature (10°C) contained as much as 15-fold more Adh1 mRNA and 8-fold more ADH1 protein activity than the corresponding tissues from untreated seedlings. Time-course studies showed that these tissues accumulated Adh1 mRNA and ADH1 activity severalfold within 4- to 8-hour, levels plateaued within 20 to 24 hours, and remained elevated at 4 days of cold treatment. Within 24 hours of returning cold-stressed seedlings to ambient temperature, Adh1 mRNA and ADH1 activity decreased to pretreatment levels. Histochemical staining of maize and rice tissue imprints showed that ADH activity was enhanced along the lengths of cold-stressed maize primary roots and rice roots, and along the stems and leaves of rice shoots. Our observations suggest that short-term cold stress induces Adh1 gene expression in certain plant tissues, which, reminiscient of the anaerobic response, may reflect a fundamental shift in energy metabolism to ensure tissue survival during the stress period.  相似文献   

15.
Alcohol dehydrogenase (Adh) is the key enzyme in alcohol fermentation. We analyzed Adh expression in order to clarify the role of Adh of soybeans (Glycine max) to flooding stress. Proteome analysis confirmed that expression of Adh is significantly upregulated in 4-day-old soybean seedlings subjected to 2 days of flooding. Southern hybridization analysis and soybean genome database search revealed that soybean has at least 6 Adh genes. The GmAdh2 gene that responded to flooding was isolated from soybean cultivar Enrei. Adh2 expression was markedly increased 6 h after flooding and decreased 24 h after floodwater drainage. In situ hybridization and Western blot indicated that flooding strongly induces Adh2 expression in RNA and protein levels in the root apical meristem. Osmotic, cold, or drought stress did not induce expression of Adh2. These results indicate that Adh2 is a flooding-response specific soybean gene expressed in root tissue.  相似文献   

16.
The mRNA for alcohol dehydrogenase (ADH) in D. melanogaster has been identified by translation in a cell-free system. The in vitro synthesized polypeptide, specifically precipitated by anti-ADH antibody, has identical subunit molecular weight (25,000 daltons) and tryptic peptide profile to the in vivo synthesized ADH. The poly A containing ADH-mRNA has been purified by specific precipitation of ADH-polysomes using anti-ADH antibody and S. aureus. Transformation of E. coli with the dA-tailed ADH-mRNA-complementary DNA hybrid annealed to the dT-tailed pBR322 yielded one plasmid which has been identified as the ADH-cDNA clone. The identification involved hybridization selection of ADH-mRNA and in vitro translation, in situ hybridization to the Adh locus on salivary gland polytene chromosomes and DNA sequencing. This ADH-cDNA plasmid contains 349 bases of the C-terminal protein coding and 180 bases of the 3' untranslated region.  相似文献   

17.
18.
The unstable mutation Adh1-Fm335 contains a Dissociation (Ds1) transposable element at position +53 in the untranslated leader of the maize Alcohol dehydrogenase-1 (Adh1) gene. Excision of Ds1 is known to generate new alleles with small additions and rearrangements of Adh1 DNA. We characterized 16 revertant alleles with respect to ADH1 activity levels in scutellum (nutritive tissue of the seed), anaerobic root, and pollen. Whereas gene expression was not different from the wild type in the sporophytic tissues of the scutellum and anaerobic root, there were strong allelic differences in pollen. One allele underexpressed pollen ADH1 at 48% of the wild-type level, and another overexpressed pollen ADH1 at 163% of the wild-type level. Quantitative RNase protection assays demonstrated that the mutant phenotypes reflected changes in the levels of steady state mRNA in pollen. These data provide a definitive demonstration of an overexpression mutant in plants and further show that marked increases in mRNA levels can follow minor alterations in central untranslated leader sequences. The nucleotide sequence of 12 new revertant alleles and the molecular mechanisms responsible for pollen-specific gene expression are discussed.  相似文献   

19.
A genomic clone for an alcohol dehydrogenase (Adh) gene has been isolated fromPetunia hybrida cv. V30 by screening aPetunia genomic library with a maizeAdh1 probe. A combination of RFLP and allozyme segregation data failed to demonstrate which of twoAdh loci, both of which map to chromosome 4, was the source of the cloned gene. The product of the cloned genes has been identified unequivocally by a transient expression assay inPetunia protoplasts. We have designated this genePetunia Adh1. The expression of this gene is tightly regulated in the developing anther, where its gene product is the predominant ADH isozyme. It is anaerobically inducible in roots, stems and leaves of seedlings. The induction of enzyme activity is correlated with induction ofAdh1 mRNA.  相似文献   

20.
Summary A comparison of soluble protein, esterase, GDH and ADH isoenzyme patterns in seeds of different steriles, maintainers and restorer lines exhibited similarities as well as differences. Soluble protein patterns from sterile and maintainer lines differed both qualitatively and quantitatively. Based on the esterase patterns, male steriles with different cytoplasms could be separated into three groups (i) Ck 60A and B; Nagpur A and B, (ii) M 35-1A and 1 B, M 31-2A and 2B, (iii) G1A and B, VZM2A and 2B. Each group could further be differentiated on the basis of minor differences in esterase isoenzyme patterns within each group. ADH and GDH patterns in general were similar in both sterile and maintainer lines.Abbreviations ADH Alcohol dehydrogenase - GDH Glutamate dehydrogenase - NAD Nicotinamide adenine dinucleotide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号