首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Raymond Kim  Dan S. Ray 《Gene》1985,40(2-3):291-299
The maxicircles from Trypanosoma brucei, Herpetomonas samuelpessoai, Leptomonas seymouri, and Phytomonas davidi were examined for the presence of a 29-bp sequence termed CF29 that has been found in the ars 189 sequence from the Crithidia fasciculata maxicircle and in Lt-ars 189 from the maxicircle of Leishmania tarentolae. The CF29 sequence also contains a yeast consensus ARS of(T/A)TTTATPuTTT(T/A). All of the maxicircles examined contained specific fragments that hybridized to the CF29 probe. The non-replicating yeast plasmid vector YIp5 was used to clone these CF29-containing maxicircle fragments. High-frequency transformation was observed when these chimeric plasmids were used to transform Saccharomyces cerevisiae. Autonomous replication of these transforming plasmids was verified by Southern analysis of yeast-cell extracts using pBR322 as a hybridization probe. Therefore it appears that the CF29 sequence is widely conserved in kinetoplastid protozoa and is associated with ARS sequences in the maxicircles. Hybridization of the CF29 probe to a population of P. davidi minicircles was also observed. However, the YIp5 chimeric plasmid containing this CF29-hybridizing minicircle fragment failed to transform yeast.  相似文献   

2.
Raymond Kim  Dan S. Ray   《Gene》1985,40(2-3):285-290
An autonomously replicating element (ars 189) has been isolated from the maxicircle DNA of an insect trypanosomatid Crithidia fasciculata. This 189-bp fragment contains two copies of the yeast consensus ARS sequence of (A/T)TTTATPuTTT(T/A), has an A + T composition of 79.4%, and shows a large asymmetry in the distribution of adenine and thymine residues between the two strands. The complementary strands of ars 189 have been cloned into an M 13 vector containing the URA3 gene of Saccharomyces cerevisiae. When these circular single-stranded (ss) DNAs were used to transform yeast spheroplasts, the M 13 chimeric DNA carrying the strand of ars189 rich in adenine generated approximately four times more yeast Ura+ transformants than the construct containing the thymine-rich strand. In contrast, both strands of yeast ARS1 cloned into an M 13 vector transformed yeast at an equivalent level. The conversion of ARS -containing ss DNAs to duplex forms in vivo and their subsequent autonomous replication have been verified by Southern hybridization analysis of extracts from yeast transformants.  相似文献   

3.
We have developed a transformation system for the yeast Candida utilis. A novel strategy was applied to construct the transformation system, since auxotrophic mutants which could be used as hosts for transformation are not available. A gene encoding the ribosomal protein L41 was cloned from C. utilis, which is sensitive to cycloheximide, and used as a marker gene conferring cycloheximide resistance after modification of its amino acid sequence. The marker gene was constructed by substitution of the proline codon at position 56 with the glutamine codon by in vitro mutagenesis, as it had been reported previously that the 56th amino acid residue of L41 is responsible for the cycloheximide sensitivity of various organisms (S. Kawai, S. Murao, M. Mochizuki, I. Shibuya, K. Yano, and M. Takagi, J. Bacteriol. 174:254-262 1992). The ribosomal DNA (i.e., DNA coding for rRNA) of C. utilis was also cloned and used as a multiple-copy target for the integration of vector DNA into the genome, which resulted in a high transformation efficiency. Transformants were obtained by electroporation with a maximum efficiency of approximately 1,400 transformants per 1 microgram of linearized DNA carrying the gene for cycloheximide resistance and part of the ribosomal DNA. No transformants were obtained with intact plasmids. Multiple copies of the linearized plasmid were integrated into the host chromosome by homologous recombination. Southern analysis of the transformants in which vector DNA was integrated at the L41 gene locus indicated that there are two copies of gene for the L41 protein per cell, suggesting that C. utilis is diploid. Transformants were obtained from a variety of C. utilis strains, indicating that this method is applicable to the transformation of other C. utilis strains, even though there is significant heterogeneity in chromosomal karyotypes among these strains.  相似文献   

4.
5.
6.
Summary Nonreciprocal recombination (gene conversion) between homologous sequences at nonhomologous locations in the genome occurs readily in the yeast Saccharomyces cerevisiae. In order to test whether the rate of gene conversion is dependent on the number of homologous copies available in the cell to act as donors of information, the level of conversion of a defined allele was measured in strains carrying plasmids containing homologous sequences. The level of recombination was elevated in a strain carrying multiple copies of the plasmid, compared with the same strain carrying a single copy of the homologous sequences either on a plasmid or integrated in the genome. Thus, the level of conversion is proportional to the number of copies of donor sequences present in the cell. We discuss these results within the framework of currently favoured models of recombination.  相似文献   

7.
8.
A method for repeated PCR-mediated promoter replacement in the yeast Saccharomyces cerevisiae is described. It was proposed to use the DNA fragment comprising the marker gene that enables both positive and negative selection (a selectable/counter-selectable marker) surrounded by direct repeats of the desired promoter as a promoter replacement cassette. This fragment is integrated upstream of the target gene because of PCR-added terminal sequences for homologous recombination with the target locus. Subsequent marker excision via homologous recombination between the copies of the two promoters leaves one copy of the desired promoter upstream of the target genes, without any heterologous scar sequence. To test this method, a set of plasmids bearing the S. cerevisiae URA3 gene surrounded by two copies of the ADH1 or PGK1 promoter was constructed. Using these cassettes, the native promoters of the GSH1 and GSH2 genes were replaced in the ura3Δ0 recipient strains. The proposed method is useful for research applications due to simple marker excision, and for construction of “self-cloning” industrial strains, because no heterologous DNA is retained in the genome of the resulting strain after marker excision.  相似文献   

9.
Genetic properties of chromosomally integrated 2 mu plasmid DNA in yeast   总被引:30,自引:0,他引:30  
S C Falco  Y Li  J R Broach  D Botstein 《Cell》1982,29(2):573-584
We obtained strains of yeast with large segments of 2 mu plasmid DNA integrated at several chromosomal locations by selecting genetically for recombination between a chromosomal sequence carried on a 2 mu-circle-containing hybrid plasmid and a homologous sequence on the chromosome. In all diploids examined, the presence of 2 mu circle sequences causes a marked instability of the chromosome into which the 2 mu DNA is inserted. Although in some cases the loss of genetic markers is due to physical loss of the entire chromosome, in most cases the loss of markers appears to be due to a mitotic homozygotization of markers: the allelic information from the homologous chromosome replaces the information distal to the integrated 2 mu DNA. The instability caused by integrated 2 mu DNA sequences requires the activity of the specialized site-specific recombination system encoded by the 2 mu plasmid. We propose that the presence of integrated 2 mu DNA allows efficient integration of additional copies of the intact 2 mu plasmid by the action of the plasmid-coded special recombination system. Unequal sister-strand exchanges within the inverted repetition would result in the formation of dicentric chromosomes whose breakage during mitosis might begin a cycle analogous to the breakage-fusion-bridge cycle described many years ago in maize.  相似文献   

10.
An attempt was made to transform Alternaria alternata protoplasts using a plasmid vector, pDH25, bearing the Escherichia coli hygromycin B (Hy) phosphotransferase gene (hph) under the control of the Aspergillus nidulans trpC promoter. Transformants arose on a selective medium containing 100 μg Hy/ml. There were two types of transformants, forming large and small colonies on the selective medium. Transformation with one μg of the vector produced an average of 4.5 large colonies and 600 small ones. In large-colony transformants, the vector often integrated into the recipient chromosome in the form of highly rearranged tandem arrays. To increase transformation efficiency, fragments of the highly repetitive ribosomal RNA gene cluster (rDNA) of A. alternata were used to construct four new vectors for homologous recombination system. Use of these vectors gave higher transformation efficiency than the original plasmid. The best vector, pDH25r1a, gave rise to large-colony transformants at a frequency 20 times higher than pDH25. Transformation events in A. alternata with pDH25r1a occured by homologous recombination as a single crossover between the plasmid-borne rDNA segment and its homologue in the chromosome, often giving rise to tandemly repeated vector DNA.  相似文献   

11.
Most laboratory strains of the yeast Saccharomyces cerevisiae contain many copies of an autonomously replicating plasmid called 2-micron circle DNA. This plasmid codes for a site-specific recombinase, the FLP protein which promotes recombination across two 599-base pair inverted repeats of the plasmid DNA. We have cloned the FLP gene under the control of a strong Escherichia coli promoter and have hyperproduced the protein in that organism. Cell-free extracts from this source promote highly efficient site-specific recombination in vitro and we have used this activity to purify the FLP protein substantially. The enzyme acts efficiently on circular and linear substrates and requires only monovalent or divalent cations for activity.  相似文献   

12.
A slow and a fast growth phenotype were observed after transformation of the phytopathogenic fungus Ashbya gossypii using a plasmid carrying homologous DNA and as selectable marker the Tn903 aminoglycoside resistance gene expressed from a strong A. gossypii promoter. Transformations with circular plasmids yielded slowly and irregularly growing geneticin-resistant mycelia in which 1% of nuclei contained plasmid sequences. Occasionally, fast growing sectors appeared which were shown to be initiated by homologous integration of the transforming DNA. Transformants obtained with plasmids linearized within the homology region immediately exhibited fast radial growth. In all 28 transformants analyzed plasmid DNA was integrated homologously. Such apparent lack of nonhomologous recombination has so far not been observed in filamentous ascomycetes. In 14 transformants two to four tandemly integrated plasmid copies were found. They underwent several types of genetic changes, mainly in the older mycelium: excision of whole plasmid copies and rearrangements within the integrated DNA (inversions and deletions). These internal rearrangements involved 360-bp inverted repeats, remnants of IS-elements flanking the resistance gene, and 156-bp direct repeats, originating from the strong A. gossypii promoter. Improved vectors lacking sequence repetitions were constructed and used for stable one-step gene replacement in A. gossypii.  相似文献   

13.
Type II restriction enzymes are paired with modification enzymes that protect type II restriction sites from cleavage by methylating them. A plasmid carrying a type II restriction-modification gene complex is not easily replaced by an incompatible plasmid because loss of the former leads to cell death through chromosome cleavage. In the present work, we looked to see whether a chromosomally located restriction-modification gene complex could be replaced by a homologous stretch of DNA. We tried to replace the PaeR7I gene complex on the Escherichia coli chromosome by transducing a homologous stretch of PaeR7I-modified DNA. The replacement efficiency of the restriction-modification complex was lower than expected. Some of the resulting recombinant clones retained the recipient restriction-modification gene complex as well as the homologous DNA (donor allele), and slowly lost the donor allele in the absence of selection. Analysis of their genome-wide rearrangements by Southern hybridization, inverse polymerase chain reaction (iPCR) and sequence determination demonstrated the occurrence of unequal homologous recombination between copies of the transposon IS3. It was strongly suggested that multiple rounds of unequal IS3-IS3 recombination caused large-scale duplication and inversion of the chromosome, and that only one of the duplicated copies of the recipient PaeR7I was replaced.  相似文献   

14.
15.
A high efficiency transformation system was established for the pennate diatom Phaeodactylum tricornutum Bohlin using a plasmid containing fucoxanthin chlorophyll a/c binding protein ( fcp ) promoter/terminator and nitrate reductase ( NR ) promoter/terminator that are derived from the pennate diatom Cylindrotheca fusiformis . The plasmid that contains the zeocin resistance gene ( ble ) with the fcp promoter and enhanced green fluorescent protein gene ( egfp ) with the NR promoter was introduced into P. tricornutum using microparticle bombardment. Transformants (650 ± 58 per 108 cells) were obtained. The yield of transformants was between 1.5 and 130 times higher than previously reported P. tricornutum transformation systems. Four to seven copies of the ble gene were integrated into genomic DNA of the transformants. This high efficiency transformation system of P. tricornutum is expected to provide a powerful tool for high-throughput analysis of gene function using homologous recombination or RNAi.  相似文献   

16.
The molecular products of DNA double strand break repair were investigated after transformation of yeast (Saccharomyces cerevisiae) with linearized plasmid DNA. DNA of an autonomous yeast plasmid cleaved to generate free ends lacking homology with the yeast genome, when used in transformation along with sonicated non-homologous carrier DNA, gave rise to transformants with high frequency. Most of these transformants were found to harbor a head-to-head (inverted) dimer of the linearized plasmid. This outcome of transformation contrasts with that observed when the carrier DNA is not present. Transformants occur at a much reduced frequency and harbor either the parent plasmid or a plasmid with deletion at the site of the cleavage. When the linearized plasmid is introduced along with sonicated carrier DNA and a homologous DNA restriction fragment that spans the site of plasmid cleavage, homologous recombination restores the plasmid to its original circular form. Inverted dimer plasmids are not detected. This relationship between homologous recombination and a novel DNA transaction that yields rearrangement could be important to the cell, as the latter could lead to a loss of gene function and lethality.  相似文献   

17.
We have developed an effective method to delete or invert a chromosomal segment and to create reciprocal recombination between two nonhomologous chromosomes in Saccharomyces cerevisiae, using the site-specific recombination system of pSR1, a circular cryptic DNA plasmid resembling 2 microns DNA of S. cerevisiae but originating from another yeast, Zygosaccharomyces rouxii. A 2.1-kilobase-pair DNA fragment bearing the specific recombination site on the inverted repeats of pSR1 was inserted at target sites on a single or two different chromosomes of S. cerevisiae by using integrative vectors. The cells were then transformed with a plasmid bearing the R gene of pSR1, which encodes the site-specific recombination enzyme and is placed downstream of the GAL1 promoter. When the transformants were cultivated in galactose medium, the recombination enzyme produced by expression of the R gene created the modified chromosome(s) by recombination between two specific recombination sites inserted on the chromosome(s).  相似文献   

18.
We have extended the technique of PCR-directed recombination in Saccharomyces cerevisiae to develop a simple method for plasmid or gene construction in the absence of suitable restriction sites. The DNA to be cloned is PCR-amplified with 30-40 bp of homology to a linearized yeast plasmid. Co-transformation into yeast results in homologous recombination at a position directed by the PCR oligonucleotides.  相似文献   

19.
Endomyces fibuliger is a dimorphic yeast which is homothallic and exists predominantly in the diploid phase with a brief haploid phase. A repeat unit of the ribosomal RNA genes, or rDNA, from E. fibuliger 8014 met has been isolated, cloned and sequenced. In this report, the sequences of the 17S, 5.8S and 26S rRNA genes are presented. Homology between the sequenced rRNA genes and those of closely-related yeast strains, particularly Saccharomyes cerevisiae and Candida albicans, was observed. As a step towards the eventual development of a transformation system for the yeast E. fibuliger, an integrative plasmid containing the 5.8S and a part of the 26S rRNA gene, a selectable marker conferring resistance to the G418 antibiotic and a reporter gene, the α-amylase (ALP1) gene of E. fibuliger, was constructed. This plasmid was linearized at a unique restriction site within the 26S rRNA gene, and transformed into S. cerevisiae INVSC2 MATa his3 ura3 using the lithium acetate method to test the functionality of the vector system. Transformation into S. cerevisiae INVSC2 MATa his3 ura3 was by virtue of the extensive homology between the sequenced 26S rRNA gene of E. fibuliger 8014 met and that of S. cerevisiae, so that homologous pairing and integration into the recipient chromosome was possible. The G418-resistant S. cerevisiae transformants produced halos on starch medium due to hydrolysis by α-amylase, and they were further analysed by Southern hybridization with the ALP1 gene and the gene encoding the aminoglycoside 3′- phosphotransferase I enzyme which confers resistance to the G418 antibiotic. A band of 13.7 kb which corresponded to the linearized size of the transforming plasmid DNA was obtained on the autoradiogram, suggesting that tandem copies of the plasmid DNA are present in the chromosome. Finally, an assay of the α-amylase enzyme secreted extracellularly was performed on the transformants.  相似文献   

20.
We examined the fate of DNA microinjected into nuclei of cultured mammalian cells. The sequence composition and the physical form of the vector carrying the selectable gene affected the efficiency of DNA-mediated transformation. Introduction of sequences near the simian virus 40 origin of DNA replication or in the long terminal repeat of avian sarcoma provirus into a recombinant plasmid containing the herpes simplex virus thymidine kinase gene. (pBR322/HSV-tk) enhanced the frequency of transformation of LMtk- and RAT-2tk- cells to the TK+ phenotype 20- to 40-fold. In cells receiving injections of only a few plasmid DNA molecules, the transformation frequency was 40-fold higher after injection of linear molecules than after injection of supercoiled molecules. By controlling the number of gene copies injected into a recipient cell, we could obtain transformants containing a single copy or as many as 50 to 100 copies of the selectable gene. Multiple copies of the transforming gene were not scattered throughout the host genome but were integrated as a concatemer at one or a very few sites in the host chromosome. Independent transformants contained the donated genes in different chromosomes. The orientation of the gene copies within the concatemer was not random; rather, the copies were organized as tandem head-to-tail arrays. By analyzing transformants obtained by coinjecting two vectors which were identical except that in one a portion of the vector was inverted, we were able to conclude that the head-to-tail concatemers were generated predominantly by homologous recombination. Surprisingly, these head-to-tail concatemers were found in transformants obtained by injecting either supercoiled or linear plasmid DNA. Even though we demonstrated that cultured mammalian cells contain the enzymes for ligating two DNA molecules very efficiently irrespective of the sequences or topology at their ends, we found that even linear plasmid DNA was recruited into the concatemer by homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号