首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
An attempt was made to transform Alternaria alternata protoplasts using a plasmid vector, pDH25, bearing the Escherichia coli hygromycin B (Hy) phosphotransferase gene (hph) under the control of the Aspergillus nidulans trpC promoter. Transformants arose on a selective medium containing 100 μg Hy/ml. There were two types of transformants, forming large and small colonies on the selective medium. Transformation with one μg of the vector produced an average of 4.5 large colonies and 600 small ones. In large-colony transformants, the vector often integrated into the recipient chromosome in the form of highly rearranged tandem arrays. To increase transformation efficiency, fragments of the highly repetitive ribosomal RNA gene cluster (rDNA) of A. alternata were used to construct four new vectors for homologous recombination system. Use of these vectors gave higher transformation efficiency than the original plasmid. The best vector, pDH25r1a, gave rise to large-colony transformants at a frequency 20 times higher than pDH25. Transformation events in A. alternata with pDH25r1a occured by homologous recombination as a single crossover between the plasmid-borne rDNA segment and its homologue in the chromosome, often giving rise to tandemly repeated vector DNA.  相似文献   

2.
We asked if single-stranded vector DNA molecules could be used to reintroduce cloned DNA sequences into a eukaryotic cell and cause genetic transformation typical of that observed using double-stranded DNA vectors. DNA was presented to Saccharomyces cerevisiae following a standard transformation protocol, genetic transformants were isolated, and the physical state of the transforming DNA sequence was determined. We found that single-stranded DNA molecules transformed yeast cells 10- to 30-fold more efficiently than double-stranded molecules of identical sequence. More cells were competent for transformation by the single-stranded molecules. Single-stranded circular (ssc) DNA molecules carrying the yeast 2 μ plasmid-replicator sequence were converted to autonomously replicating double-stranded circular (dsc) molecules, suggesting their efficient utilization as templates for DNA synthesis in the cell. Single-stranded DNA molecules carrying 2 μ plasmid non-replicator sequences recombined with the endogenous multicopy 2 μ plasmid DNA. This recombination yielded either the simple molecular adduct expected from homologous recombination (40% of the transformants examined) or aberrant recombination products carrying incomplete transforming DNA sequences, endogenous 2 μ plasmid DNA sequences, or both (60% of the transformants examined). These aberrant recombination products suggest the frequent use of a recombination pathway that trims one or both of the substrate DNA molecules. Similar aberrant recombination products were detected in 30% of the transformants in cotransformation experiments employing single-stranded and double-stranded DNA molecules, one carrying the 2 μ plasmid replicator sequence and the other the selectable genetic marker. We conclude that single-stranded DNA molecules are useful vectors for the genetic transformation of a eukaryotic cell. They offer the advantage of high transformation efficiency, and yield the same intracellular DNA species obtained upon transformation with double-stranded DNA molecules. In addition, single-stranded DNA molecules can participate in a recombination pathway that trims one or both DNA recombination substrates, a pathway not detected, at least at the same frequency, when transforming with double-stranded DNA molecules  相似文献   

3.
Transformation of Penicillium expansum with the pBT6 vector yielded 8 to 34 transformants per g of DNA. Hybridization analyses revealed that homologous recombination occurred in most of the transformants. Twenty-one out of 25 transformants analysed showed hybridization patterns which were indistinguishable from that of the wild type.  相似文献   

4.
We report the development of a homologous transformation system for Cephalosporium acremonium using the niaD gene of the nitrate assimilation (NA) pathway. Mutants in the NA pathway were selected on the basis of chlorate resistance by conventional means. Screening procedures were developed to differentiate between nitrate reductase apoprotein structural gene mutants (niaD) and molybdenum cofactor gene mutants (cnx) as wt. C. acremonium, unlike most filamentous fungi, fails to grow on minimal medium with hypoxanthine as a sole source of nitrogen. Phage clones carrying the niaD gene were isolated from a C. acremonium library constructed in λEMBL3 using the A. nidulans niaD gene as a heterologous probe. An 8.6-kb EcoRI fragment was subcloned into pUC18, and designated pSTA700. pSTA700 was able to transform stable niaD mutants to NA at a frequency of up to 40 transformants per μg DNA. Transformants were easily visible since the background growth was low and no abortives were observed. Gene replacements, single copy homologous integration and complex multiple integrations were observed. The niaD system was used to introduce unselected markers for hygromycin B resistance and benomyl resistance into C. acremonium by cotransformation.  相似文献   

5.
R C Dickson 《Gene》1980,10(4):347-356
Three recombinant DNA vectors carrying the β-galactosidase structural gene, LAC4, from the yeast Kluyveromyces lactis were constructed and transformed into Saccharomyces cerevisiae. All transformants expressed the β-galactosidase activity of LAC4. However, the level of enzyme activity varied, being highest in cells transformed with vectors which are maintained as multicopy plasmids and lowest in cells transformed with a vector which integrates into chromosomes. Enzyme levels probably reflect gene dosage. LAC4 is very stable when integrated into a chromosome, but unstable when carried on a plasmid. Therefore, stability is a property of the recombinant vector rather than of LAC4, LAC4-coded β-galactosidase synthesized in either S. cerevisiae or in K. lactis is the same as judged by two-dimensional polyacrylamide gel electrophoresis. However, S. cerevisiae transformed with  相似文献   

6.
Experiments were conducted with CIV and C V copepodites of Calanus hyperboreus (Krøyer) to determine if they would feed on the prymnesiophyte Phaeocystis pouchetii (Hariot). We used analysis of gut pigment to estimate ingestion and clearance rates. In applying this methodology we have demonstrated that pigments can be completely extracted from whole animals within 90 min, and that laborious procedures of tissue homogenization and centrifugation are not required. We conducted two experiments. In the first experiment Stage IV copepodites were exposed to ≈1 mg C·1−1 of either P. pouchetii flagellates, small colonies (25–200 μm), large colonies (> 200 μm) or mixed diatoms > 25 μm (primarily Chaetoceros socialis Lauder and Nitzschia grunowii Hasle). Ingestion rates and daily rations were almost four times greater on both sizes of colonies than on either Phaeocystis pouchetii flagellates or mixed diatoms. Daily rations of copepodites feeding on colonies ranged from 8.1 to 12.4% · day−1, well within the range previously reported for Calanus hyperboreus or sympatric copepods of similar size. From the second experiment we determined that Stage V copepodites obtained a daily ration of 6.2 to 10.8% · day−1 when feeding on small colonies of Phaeocystis pouchetii. We conclude that a diet of P. pouchetii colonies should sustain the metabolic and growth requirements of Calanus hyperboreus copepodites.  相似文献   

7.
为研究红豆杉紫杉醇合成途径限速酶基因功能及其对内生真菌烟曲霉TMS-26发酵产紫杉醇的影响,以曼地亚红豆杉愈伤组织制备cDNA作为模板扩增苯丙氨酸氨基变位酶基因(Txpam),构建重组质粒pGEX-4T-1-Txpam,转入大肠杆菌中进行异源诱导表达,经亲和层析纯化,获取重组酶TxPAM并验证其酶活性。构建pCAMBIA1302-Txpam质粒,转化农杆菌感受态细胞,利用农杆菌介导的转化体系获得转化子并优化转化条件,结合插入片段携带的分子标记和目的基因进行转化子验证,同时培养转化菌株并检测紫杉醇产量。结果表明:纯化获取的重组酶TxPAM,经HPLC检测具有将α-苯丙氨酸催化为β-苯丙氨酸的功能;在最优转化条件下,转化子数目达到471个/106个孢子;根据基因hygTxpam的克隆以及测序结果,说明成功构建了基因工程菌株,通过对其发酵条件进行优化,紫杉醇产量达到721.87μg/L。  相似文献   

8.
Pseudomonas corrugata, a soil bacterium originally isolated from a temperate site of Indian Himalayan Region (IHR) is examined for its antagonistic activities against two phytopathogenic fungi, Alternaria alternata and Fusarium oxysporum. Although the bacterium did not show inhibition zones due to production of diffusible antifungal metabolites, a reduction in growth between 58% and 49% in both test fungi, A. alternata and F. oxysporum, was observed in sealed Petri plates after 120 h of incubation due to production of volatile antifungal metabolites. Reduction in biomass of A. alternata (93.8%) and F. oxysporum (76.9%) in Kings B broth was recorded after 48 h of incubation in dual culture. The antagonism was observed to be affected by growth medium, pH and temperature. The reduction in fungal biomass due to antagonism of bacteria was recorded maximum in the middle of the stationary phase after 21 h of inoculation. The production of siderophore, ammonia, lipase and chitinase in growth medium by P. corrugata were considered contributing to the antagonistic activities of the bacterium.  相似文献   

9.
A new rapid transformation system for Aspergillus niger that uses electroporation to render intact germinating conidia permeable to DNA is described. The transformant colonies appeared earlier than transformants obtained by the protoplast-forming method. Without pretreatment of the conidia the transformation frequencies were 1.2 colonies per μg of integrative vector and 100 colonies per μg of plasmid DNA. When the conidia were treated with a dilute solution of fungal cell wall lytic enzyme, the frequency of transformation was increased by approx. 2-fold when using two vectors. Southern blot analysis of genomic DNA and restriction endonuclease-digested DNA from a random sample of transformants showed homologous and nonhomologous integration of the integrative vector into the genome, as is also observed with the protoplast-forming method. In transformation with the plasmid vector, the transformant DNA was shown to be mostly maintained in free form with minimal integration into the chromosome when transformed by either intact electroporation or the conventional method.  相似文献   

10.
Thus far plastid transformation in higher plants has been based on incorporation of foreign DNA in the plastid genome by the plastid's homologous recombination machinery. We report here an alternative approach that relies on integration of foreign DNA by the phiC31 phage site-specific integrase (INT) mediating recombination between bacterial and phage attachment sites (attB and attP, respectively). Plastid transformation by the new approach depends on the availability of a recipient line in which an attB site has been incorporated in the plastid genome by homologous recombination. Plastid transformation involves insertion of an attP vector into the attB site by INT and selection of transplastomic clones by selection for antibiotic resistance carried in the attP plastid vector. INT function was provided by either expression from a nuclear gene, which encoded a plastid-targeted INT, or expressing INT transiently from a non-integrating plasmid in plastids. Transformation was successful with both approaches using attP vectors with kanamycin resistance or spectinomycin resistance as the selective marker. Transformation efficiency in some of the stable nuclear INT lines was as high as 17 independently transformed lines per bombarded sample. As this system does not rely on the plastid's homologous recombination machinery, we expect that INT-based vectors will make plastid transformation a routine in species in which homologous recombination rarely yields transplastomic clones.  相似文献   

11.
Electroporation and Agrobacterium tumefaciens-mediated transformation (ATMT) were adapted and optimized for genetic transformation of the basidiomycetous yeast-like fungus Pseudozyma antarctica as alternatives to the cumbersome PEG/CaCl2-mediated transformation of protoplasts. Electroporation yielded 100–200 transformants per μg of DNA per 108 cells after 3 days on selective medium. For its part, ATMT yielded 60–160 transformants per 106 input cfu after 5–10 days on a selective medium. Transformants obtained from both methods showed stable hygromycin resistance and strong expression of green fluorescent protein. Analysis of integration events revealed a limited number of predominantly tandem insertions in the genome of transformants, an improvement over PEG/CaCl2-mediated transformation. Both protocols relied on intact conidia of P. antarctica as starting material and thus eliminated the need for cell wall-degrading or weakening agents such as lytic enzymes or chemicals. Other advantages over protoplast transformation included higher yield of transformants and shorter recovery time of transformed colonies on selective medium.  相似文献   

12.
Aspergillus nidulans strain G191 was transformed to hygromycin resistance using plasmid pDH25, which contains the bacterial hygromycin B phosphotransferase gene (hph) fused to promoter elements of the A. nidulans trpC gene. Southern hybridizations of transformants revealed multiple, integrated copies of the vector. A pleiotropic effect conferring increased hygromycin B sensitivity was found to be associated with the A. nidulans pyrG89 allele. Plasmid pDH25 features a ClaI site immediately preceding the hph start codon thus permitting convenient replacement of the trpC sequences with other eukaryotic promoters.  相似文献   

13.
A versatile plasmid shuttle vector system pKDU7 was constructed, which is useful for the heterologous gene expression in a wide range of Kluyveromyces and Saccharomyces strains. This cloning vector was constructed using the 1.6-μm circular plasmid pKD1 of Kluyveromyces drosophilarum, the URA3 gene of K. marxianus as well as the pUC19 sequences. The stability of vector in transformants strongly depends on the integrity of the functionally important elements of pKD1. It was shown by comparison of three recombinant vectors, which possessed the pKD1 sequence inserted in different ways. The efficient transformation and stability maintenance of the vector constructed in various strains of Kluyveromyces and Saccharomyces was shown by the expression of the EPG1 gene of the Kluyveromyces marxianus encoding pectin-degrading endopolygalacturonase.  相似文献   

14.
We cloned a polyketide synthase gene (pks12) from Fusarium graminearum, a devastating fungal pathogen of cereals. Transformation-mediated gene disruption led to an easily detectable albino phenotype of the disruptants. We used the disruption of the pks12 gene as a visible marker for transformation-mediated homologous recombination and optimized the transformation procedure to achieve a high rate of homologous recombination. In combination with the published genomic sequence data and the generation of expressed sequence tags (ESTs) for F. graminearum, this is a useful tool to investigate this important plant pathogen on a molecular level. Optimized transformation of F. graminearum resulted in at least 93% homologous recombination events when the homologous genomic DNA fragment in the vector had a size of approximately 800bp and was linearized in the middle. Using a genomic sequence of approximately 500bp in the transformation vector, 70% of the transformants still exhibited homologous recombination. On the contrary, no more than 10% homologous recombination events were observed when less than 400bp DNA fragments were used. We co-transformed F. graminearum with two different vectors. One vector harboured a DNA insert homologous to the pks12 gene, while the other vector consisted of the same vector backbone carrying the selection marker specific for F. graminearum. About 70% of the transformants had a disrupted pks12 gene, and all of these showed an integration of the second vector into the pks disruption vector. Therefore, the time-consuming construction of a single transformation vector can be avoided; furthermore, it is now easily feasible to express a gene construct at a defined and mutated genomic site.  相似文献   

15.
16.
Transformation of Saccharomyces cerevisiae strains was examined by using the URA3 and TRP1 genes cloned into M13 vectors in the absence of sequences capable of promoting autonomous replication. These constructs transform S. cerevisiae cells to prototrophy by homologous recombination with the resident mutant gene. Single-stranded DNA was found to transform S. cerevisiae cells at efficiencies greater than that of double-stranded DNA. No conversion of single-stranded transforming DNA into duplex forms could be detected during the transformation process, and we conclude that single-stranded DNA may participate directly in recombination with chromosomal sequences. Transformation with single-stranded DNA gave rise to both gene conversion and reciprocal exchange events. Cotransformation with competing heterologous single-stranded DNA specifically inhibited transformation by single-stranded DNA, suggesting that one of the components in the transformation-recombination process has a preferential affinity for single-stranded DNA.  相似文献   

17.
In the moss Physcomitrella patens, transforming DNA containing homologous sequences integrates predominantly by homologous recombination with its genomic target. A systematic investigation of the parameters that determine gene targeting efficiency shows a direct relationship between homology length and targeting frequency for replacement vectors (a selectable marker flanked by homologous DNA). Overall homology of only 1 kb is sufficient to achieve a 50% yield of targeted transformants. Targeting may occur through homologous recombination in one arm, accompanied by non-homologous end-joining by the other arm of the vector, or by allele replacement following two homologous recombination events. Allele replacement frequency depends on the symmetry of the targeting vector, being proportional to the length of the shorter arm. Allele replacement may involve insertion of multiple copies of the transforming DNA, accompanied by ectopic insertions at non-homologous sites. Single-copy and single insertions at targeted loci (targeted gene replacements, ‘TGR’) occur with a frequency of 7–20% of all transformants when the minimum requirements for allele replacement are met. Homologous recombination in Physcomitrella is substantially more efficient than in any multicellular eukaryote, recommending it as the outstanding model for the study of homologous recombination in plants.  相似文献   

18.
W H Bingle 《Plasmid》1988,19(3):242-250
The non-nitrogen-fixing (Nif-) strain UW10 of Azotobacter vinelandii OP (UW) was naturally induced to competence and transformed with broad host range plasmid pKT210 containing the cloned wild-type nif-10 locus from A. vinelandii UW (Nif+); this marker was unable to complement the nif-10 mutation in trans, but could through recombination with the chromosome. The most frequent type of transformation event observed was recombination between the homologous regions of the plasmid and chromosome (producing Nif+ transformants) with loss of the plasmid vector. At a substantially lower frequency, transformants expressing the plasmid-encoded antibiotic resistance determinants were isolated which were phenotypically Nif-. Agarose gel electrophoresis showed that these transformants contained a plasmid migrating with the same mobility as the original donor plasmid. During culture these transformants acquired a Nif+ phenotype without the loss of the plasmid, as judged by the use of a hybridization probe specific for the cloned nif-DNA fragment. These data indicate that plasmids carrying sequences homologous to chromosomal sequences could be maintained in recombination-proficient A. vinelandii UW. The introduction of plasmids containing sequences homologous to chromosomal sequences was facilitated by prelinearization of the plasmid using a restriction endonuclease generating cohesive ends. Because the site of linearization could be chosen outside the region of shared homology, it was unlikely that the route of plasmid establishment occurred via a homology-facilitated transformation mechanism. The data also indicated that A. vinelandii UW could harbor broad host range cloning vectors based on plasmid RSF1010 without significant impairment of its nitrogen-fixation ability.  相似文献   

19.
Summary We used lambda and plasmid vectors containing the am + gene in an insert of from 2.7 to 9.1 kb, to transform am point mutant and deletion strains. A total of 199 transformants were examined with the potential to yield am transformants by homologous recombination. When we used vectors that had 9.1 kb of homology with the chromosomal DNA, 30% of the transformants obtained were the result of homologous recombination regardless of whether the vector was a lambda molecule, a circular plasmid, or a plasmid that had been linearized prior to transformation. When vectors with up to 5.1 kb of homology were used, very few transformants (1 of 89 tested) resulted from homologous recombination. Of a sample of 29 ectopic integration events obtained by transformation with the 9.1 kb fragment cloned in a vector, 18 included a major part (usually almost all) of both arms of lambda with the entire Neurospora 9.1 kb insert between them. Four included only long arm sequence together with an adjacent segment of the insert containing the am gene. The remaining seven were the result of multiple integrations. There was no evidence of circularization of the vector prior to integration. All transformants that had multiple copies of the am gene appeared to be subject to the RIP process, which causes multiple mutations in duplicated sequences during the sexual cycle.  相似文献   

20.
《Fungal biology》2020,124(10):854-863
Trichoderma species play important roles in nature as plant growth promotors and antagonists of phytopathogenic fungi, and are used as models to study photomorphogenesis. Molecular tools have been implemented to manipulate and improve these fungi. However, instability of transformants or very low frequency of homologous recombination has been reported. Here, we report the fate of transforming DNA, demonstrating that it can follow two different fates. When a vector contains sequences also present in the Trichoderma atroviride genome, it mainly integrates by homologous recombination generating stable recombinant strains. In contrast, vectors with no sequence homology to the T. atroviride genome generate unstable transformants, losing the transforming DNA in the first generation of conidia produced without selection where, surprisingly, the vector behaves as autoreplicative. Integration by homologous recombination was demonstrated when transformants were generated with a truncated version of the blr2 gene, resulting in insertional mutants with phenotypes identical to those of knockout mutants. Our results indicate that T. atroviride is highly efficient in integrating DNA by homologous recombination and that plasmid vectors with no sequence homology to the genome are maintained for several generations in T. atroviride if kept under selective pressure even though they lacked fungal autonomous replication sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号