首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disassembly of the nucleolus during mitosis is driven by phosphorylation of nucleolar proteins. RNA processing stops until completion of nucleolar reformation in G(1) phase. Here, we describe the RNA methyltransferase NSUN2, a novel substrate of Aurora-B that contains an NOL1/NOP2/sun domain. NSUN2 was concentrated in the nucleolus during interphase and was distributed in the perichromosome and cytoplasm during mitosis. Aurora-B phosphorylated NSUN2 at Ser139. Nucleolar proteins NPM1/nucleophosmin/B23 and nucleolin/C23 were associated with NSUN2 during interphase. In mitotic cells, association between NPM1 and NSUN2 was inhibited, but NSUN2-S139A was constitutively associated with NPM1. The Aurora inhibitor Hesperadin induced association of NSUN2 with NPM1 even in mitosis, despite the silver staining nucleolar organizer region disassembly. In vitro methylation experiments revealed that the Aurora-B-phosphorylation and the phosphorylation-mimic mutation (S139E) suppressed methyltransferase activities of NSUN2. These results indicate that Aurora-B participates to regulate the assembly of nucleolar RNA-processing machinery and the RNA methyltransferase activity of NSUN2 via phosphorylation at Ser139 during mitosis.  相似文献   

2.
Cognitive impairment or intellectual disability (ID) is a widespread neurodevelopmental disorder characterized by low IQ (below 70). ID is genetically heterogeneous and is estimated to affect 1–3% of the world’s population. In affected children from consanguineous families, autosomal recessive inheritance is common, and identifying the underlying genetic cause is an important issue in clinical genetics. In the framework of a larger project, aimed at identifying candidate genes for autosomal recessive intellectual disorder (ARID), we recently carried out single nucleotide polymorphism-based genome-wide linkage analysis in several families from Ardabil province in Iran. The identification of homozygosity-by-descent loci in these families, in combination with whole exome sequencing, led us to identify possible causative homozygous changes in two families. In the first family, a missense variant was found in GRM1 gene, while in the second family, a frameshift alteration was identified in TRMT1, both of which were found to co-segregate with the disease. GRM1, a known causal gene for autosomal recessive spinocerebellar ataxia (SCAR13, MIM#614831), encodes the metabotropic glutamate receptor1 (mGluR1). This gene plays an important role in synaptic plasticity and cerebellar development. Conversely, the TRMT1 gene encodes a tRNA methyltransferase that dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl methionine as the methyl group donor. We recently presented TRMT1 as a candidate gene for ARID in a consanguineous Iranian family (Najmabadi et al., 2011). We believe that this second Iranian family with a biallelic loss-of-function mutation in TRMT1 gene supports the idea that this gene likely has function in development of the disorder.  相似文献   

3.
4.
Many cellular RNAs require modification of specific residues for their biogenesis, structure, and function. 5-methylcytosine (m5C) is a common chemical modification in DNA and RNA but in contrast to the DNA modifying enzymes, only little is known about the methyltransferases that establish m5C modifications in RNA. The putative RNA methyltransferase NSUN6 belongs to the family of Nol1/Nop2/SUN domain (NSUN) proteins, but so far its cellular function has remained unknown. To reveal the target spectrum of human NSUN6, we applied UV crosslinking and analysis of cDNA (CRAC) as well as chemical crosslinking with 5-azacytidine. We found that human NSUN6 is associated with tRNAs and acts as a tRNA methyltransferase. Furthermore, we uncovered tRNACys and tRNAThr as RNA substrates of NSUN6 and identified the cytosine C72 at the 3′ end of the tRNA acceptor stem as the target nucleoside. Interestingly, target recognition in vitro depends on the presence of the 3′-CCA tail. Together with the finding that NSUN6 localizes to the cytoplasm and largely colocalizes with marker proteins for the Golgi apparatus and pericentriolar matrix, our data suggest that NSUN6 modifies tRNAs in a late step in their biogenesis.  相似文献   

5.
Intellectual disability (ID) is one of the most common disabilities and, although many genes have been implicated in its etiology, the genetic heterogeneity of ID continues to expand. The purpose of the study was to describe a novel autosomal recessive non-syndromic ID locus. Autozygome and linkage analysis, and exome sequencing followed by RNA and protein analysis of the candidate disease gene were performed. We describe two multiplex consanguineous families with non-syndromic ID phenotype, which maps to a critical linkage locus on 3q26. Exome sequencing of the index in each family revealed the same homozygous truncating mutation in TNIK that results in complete loss of the protein. TNIK is a kinase with a well-established role in dendrite development and synaptic transmission. The phenotype we observe in human patients who lack TNIK is consistent with the previously published Tnik ?/? phenotype in the murine model. Our data strongly implicate TNIK deficiency in the causation of ID in humans.  相似文献   

6.
The 5-methylcytosine (m5C) RNA methyltransferase NSUN2 is involved in the regulation of cell proliferation and metastasis formation and is upregulated in multiple cancers. However, the biological significance of NSUN2 in gastric cancer (GC) and the modification of NSUN2 itself have not been fully investigated. Here, we analyzed the expression level of NSUN2 in tissue microarrays containing 403 GC tissues by immunohistochemistry. NSUN2 was upregulated in GC, and that it was a predictor of poor prognosis. NSUN2 promotes the proliferation, migration, and invasion of GC cells in vitro. We also demonstrated that small ubiquitin-like modifier (SUMO)-2/3 interacts directly with NSUN2 by stabilizing it and mediating its nuclear transport. This facilitates the carcinogenic activity of NSUN2. Furthermore, m5C bisulfite sequencing (Bis-seq) in NSUN2-deficient GC cells showed that m5C-methylated genes are involved in multiple cancer-related signaling pathways. PIK3R1 and PCYT1A may be the target genes that participate in GC progression. Our findings revealed a novel mechanism by which NSUN2 functions in GC progression. This may provide new treatment options for GC patients.Subject terms: Gastric cancer, Post-translational modifications  相似文献   

7.
NSUN2, also known as SAKI or MISU, is a methyltransferase which catalyses (cytosine-5-)-methylation of tRNA. The human NSUN2 gene is located on chromosome 5p15.31-33. We show that NSUN2 gene copy number is increased in oral and colorectal cancers. Protein expression levels of NSUN2 were determined by immunoblot using novel polyclonal antibodies raised against a synthetic peptide corresponding to the C-terminal region of the protein. In most normal tissues, NSUN2 expression levels were extremely low. On the other hand, oral and colorectal cancers typically expressed high levels of NSUN2. The level of NSUN2 was similar in interphase and mitotic cells, and immunohistochemical analysis demonstrated strong staining for NSUN2 in oral and colon cancer tissues when compared with normal tissues, providing a distinct diagnostic significance for NSUN2 in comparison with Ki-67, a widely used marker of actively proliferating cells. In addition, elevated protein expression of NSUN2 was confirmed by immunohistochemical analysis of various cancers including esophageal, stomach, liver, pancreas, uterine cervix, prostate, kidney, bladder, thyroid, and breast cancers. NSUN2 is regulated by Aurora-B, a newly developed molecular target for cancer therapy, leading us to propose that NSUN2 might become a valuable target for cancer therapy and a cancer diagnostic marker.  相似文献   

8.
The congenital muscular dystrophies (CMD) are a heterogeneous group of autosomal recessive disorders, which present within the first 6 months of life with hypotonia, muscle weakness and contractures, associated with dystrophic changes on skeletal muscle biopsy. We have previously reported a large consanguineous family segregating merosin-positive congenital muscular dystrophy, in which involvement of known CMD loci was excluded. A genome-wide linkage search of the family conducted using microsatellite markers spaced at 10-Mb intervals failed to identify a disease locus. A second scan using a high-density SNP array, however, permitted a novel CMD locus on 4p16.3 to be identified (multipoint LOD score 3.4). Four additional consanguineous CMD families with a similar phenotype were evaluated for linkage to a 4.14-Mb interval on 4p16.3; however, none showed any evidence of linkage to the region. Our findings further illustrate the utility of highly informative SNP arrays compared with standard panels of microsatellite markers for the mapping of recessive disease loci.  相似文献   

9.
Meckel-Gruber syndrome (MKS), the most common monogenic cause of neural tube defects, is an autosomal recessive disorder characterised by a combination of renal cysts and variably associated features, including developmental anomalies of the central nervous system (typically encephalcoele), hepatic ductal dysplasia and cysts, and polydactyly. Locus heterogeneity has been demonstrated by the mapping of the MKS1locus to 17q21-24 in Finnish kindreds, and of MKS2 to 11q13 in North African-Middle Eastern cohorts. In the present study, we have investigated the genetic basis of MKS in eight consanguineous kindreds, originating from the Indian sub-continent, that do not show linkage to either MKS1 or MKS2. We report the localisation of a third MKS locus ( MKS3) to chromosome 8q24 in this cohort by a genome-wide linkage search using autozygosity mapping. We identified a 26-cM region of autozygosity between D8S586 and D8S1108 with a maximum cumulative two-point LOD score at D8S1179 ( Z(max)=3.04 at theta=0.06). A heterogeneity test provided evidence of one unlinked family. Exclusion of this family from multipoint analysis maximised the cumulative multipoint LOD score at locus D8S1128 ( Z(max)=5.65). Furthermore, a heterozygous SNP in DDEF1, a putative candidate gene, suggested that MKS3 mapped within a 15-cM interval. Comparison of the clinical features of MKS3-linked cases with reports of MKS1- and MKS2-linked kindreds suggests that polydactyly (and possibly encephalocele) appear less common in MKS3-linked families.  相似文献   

10.
11.
Mujtaba G  Bukhari I  Fatima A  Naz S 《Gene》2012,504(1):98-101
Mutations in PJVK, encoding Pejvakin, cause autosomal recessive nonsyndromic hearing loss in humans at the DFNB59 locus on chromosome 2q31.2. Pejvakin is involved in generating auditory and neural signals in the inner ear. We have identified a consanguineous Pakistani family segregating sensorineural progressive hearing loss as a recessive trait, consistent with linkage to DFNB59. We sequenced PJVK and identified a novel missense mutation, c.1028G>C in exon 7 (p.C343S) co-segregating with the phenotype in the family. The p.C343 residue is fully conserved among orthologs from different vertebrate species. We have also determined that mutations in PJVK are not a common cause of hearing loss in families with moderate to severe hearing loss in Pakistan. This is the first report of PJVK mutation in a Pakistani family and pinpoints an important residue for PJVK function.  相似文献   

12.
The genetic etiology for many forms of hearing impairment (HI) is very diverse. Non-syndromic HI (NSHI) is one of the most heterogeneous traits known. Autosomal recessive forms of prelingual HI account for approximately 75% of hereditary cases. A novel autosomal recessive NSHI locus, DFNB44, was mapped to a 20.9 cM genetic interval on chromosome 7p14.1-q11.22, according to the Marshfield genetic map, in a consanguineous Pakistani family. Multipoint linkage analysis resulted in a maximum LOD score of 5.0 at marker D7S1818. The 3-unit support interval ranged from marker D7S2209 to marker D7S2435, spanning a 30.1 Mb region on the sequence-based physical map.  相似文献   

13.
We performed genome-wide homozygosity mapping in a large consanguineous family from Morocco and mapped the autosomal-recessive nonsyndromic hearing loss (ARNSHL) in this family to the DFNB79 locus on chromosome 9q34. By sequencing of 62 positional candidate genes of the critical region, we identified a causative homozygous 11 bp deletion, c.42_52del, in the TPRN gene in all seven affected individuals. The deletion is located in exon 1 and results in a frameshift and premature protein truncation (p.Gly15AlafsX150). Interestingly, the deleted sequence is part of a repetitive and CG-rich motive predicted to be prone to structural aberrations during crossover formation. We identified another family with progressive ARNSHL linked to this locus, whose affected members were shown to carry a causative 1 bp deletion (c.1347delG) in exon 1 of TPRN. The function of the encoded protein, taperin, is unknown; yet, partial homology to the actin-caping protein phostensin suggests a role in actin dynamics.  相似文献   

14.
Autosomal-recessive high-grade axial myopia was diagnosed in Bedouin Israeli consanguineous kindred. Some affected individuals also had variable expressivity of early-onset cataracts, peripheral vitreo-retinal degeneration, and secondary sight loss due to severe retinal detachments. Through genome-wide linkage analysis, the disease-associated gene was mapped to ~1.7 Mb on chromosome 3q28 (the maximum LOD score was 11.5 at θ = 0 for marker D3S1314). Sequencing of the entire coding regions and intron-exon boundaries of the six genes within the defined locus identified a single mutation (c.1523G>T) in exon 10 of LEPREL1, encoding prolyl 3-hydroxylase 2 (P3H2), a 2-oxoglutarate-dependent dioxygenase that hydroxylates collagens. The mutation affects a glycine that is conserved within P3H isozymes. Analysis of wild-type and p.Gly508Val (c.1523G>T) mutant recombinant P3H2 polypeptides expressed in insect cells showed that the mutation led to complete inactivation of P3H2.  相似文献   

15.
We report on a consanguineous Pakistani family with a severe congenital microcephaly syndrome resembling the Seckel syndrome and Jawad syndrome. The affected individuals in this family were born to consanguineous parents of whom the mother presented with mild intellectual disability (ID), epilepsy and diabetes mellitus. The two living affected brothers presented with microcephaly, white matter disease of the brain, hyponychia, dysmorphic facial features with synophrys, epilepsy, diabetes mellitus and ID. Genotyping with a 250K SNP array in both affected brothers revealed an 18 MB homozygous region on chromosome 18p11.21-q12.1 encompassing the SCKL2 locus of the Seckel and Jawad syndromes. Sequencing of the RBBP8 gene, underlying the Seckel and Jawad syndromes, identified the novel mutation c.919A > G, p.Arg307Gly, segregating in a recessive manner in the family. In addition, in the two affected brothers and their mother we have also found a heterozygous 607 kb deletion, encompassing exons 13–19 of NRXN1. Bidirectional sequencing of the coding exons of NRXN1 did not reveal any other mutation on the other allele. It thus appears that the phenotype of the mildly affected mother can be explained by the NRXN1 deletion, whereas the more severe and complex microcephalic phenotype of the two affected brothers is due to the simultaneous deletion in NRXN1 and the homozygous missense mutation affecting RBBP8.  相似文献   

16.
Ectodermal dysplasias (EDs) are a large heterogeneous group of inherited disorders exhibiting abnormalities in ectodermally derived appendages such as hair, nails, teeth and sweat glands. EDs associated with reticulated pigmentation phenotype are rare entities for which the genetic basis and pathophysiology are not well characterized. The present study describes a five generation consanguineous Pakistani family segregating an autosomal recessive form of a novel type of ectodermal dysplasia. The affected members present with sparse and woolly hair, severe nail dystrophy and reticulate skin pigmentation. After exclusion of known gene loci related with other skin disorders, genome-wide linkage analysis was performed using Illumina HumanOmniExpress beadchip SNP arrays. We linked this form of ED to human chromosome 18p11.32-p11.31 flanked by the SNPs rs9284390 (0.113Mb) and rs4797100 (3.14 Mb). A maximum two-point LOD score of 3.3 was obtained with several markers along the disease interval. The linkage interval of 3.03 Mb encompassed seventeen functional genes. However, sequence analysis of all these genes did not discover any potentially disease causing-variants. The identification of this novel locus provides additional information regarding the mapping of a rare form of ED. Further research, such as the use of whole-genome sequencing, would be expected to reveal any pathogenic mutation within the disease locus.  相似文献   

17.
The trm1 mutation of Saccharomyces cerevisiae is a single nuclear mutation that affects a specific base modification of both cytoplasmic and mitochondrial tRNA. Transfer RNA isolated from trm1 cells lacks the modified base N2,N2-dimethylguanosine, and extracts from these cells do not have detectable N2,N2-dimethylguanosine-specific tRNA methyltransferase activity. As part of our efforts to determine how this mutation affects enzyme activities in two different cellular compartments we have isolated the TRM1 locus by genetic complementation. The TRM1 locus restores the N2,N2-dimethylguanosine modification to both cytoplasmic and mitochondrial tRNA in trm1 cells. An open reading frame in this TRM1 gene is essential for complementation of the trm1 phenotype. Expression of this open reading frame in Escherichia coli converts the organism from one that neither makes N2,N2-dimethylguanosine nor has N2,N2-dimethylguanosine-specific tRNA methyltransferase activity into one that does. This result suggests that the TRM1 locus is the structural gene for the tRNA modification enzyme and that both nuclear/cytoplasmic and mitochondrial forms of the methyltransferase are produced from the same gene.  相似文献   

18.
Primary (or "true") microcephaly is inherited as an autosomal recessive trait and is thought to be genetically heterogeneous. Using autozygosity mapping, we have identified a genetic locus (MCPH1) for primary microcephaly, at chromosome 8p22-pter, in two consanguineous families of Pakistani origin. Our results indicate that the gene lies within a 13-cM region between the markers D8S1824 and D8S1825 (maximum multipoint LOD score of 8.1 at D8S277). In addition, we have demonstrated the genetic heterogeneity of this condition by analyzing a total of nine consanguineous families with primary microcephaly.  相似文献   

19.
In a large consanguineous family of Turkish origin, genome-wide homozygosity mapping revealed a locus for recessive nonsyndromic hearing impairment on chromosome 14q24.3-q34.12. Fine mapping with microsatellite markers defined the critical linkage interval to a 18.7 cM region flanked by markers D14S53 and D14S1015. This region partially overlapped with the DFNB35 locus. Mutation analysis of ESRRB, a candidate gene in the overlapping region, revealed a homozygous 7 bp duplication in exon 8 in all affected individuals. This duplication results in a frame shift and premature stop codon. Sequence analysis of the ESRRB gene in the affected individuals of the original DFNB35 family and in three other DFNB35-linked consanguineous families from Pakistan revealed four missense mutations. ESRRB encodes the estrogen-related receptor beta protein, and one of the substitutions (p.A110V) is located in the DNA-binding domain of ESRRB, whereas the other three are substitutions (p.L320P, p.V342L, and p.L347P) located within the ligand-binding domain. Molecular modeling of this nuclear receptor showed that the missense mutations are likely to affect the structure and stability of these domains. RNA in situ hybridization in mice revealed that Esrrb is expressed during inner-ear development, whereas immunohistochemical analysis showed that ESRRB is present postnatally in the cochlea. Our data indicate that ESRRB is essential for inner-ear development and function. To our knowledge, this is the first report of pathogenic mutations of an estrogen-related receptor gene.  相似文献   

20.
We describe a highly consanguineous family, originating from Pakistan, displaying histiocytosis, joint contractures, and sensorineural deafness. The form of histiocytosis exhibited by this family does not fit readily into any of the recognized classes of this disease. It appears to represent a novel form of familial histiocytosis demonstrating autosomal recessive inheritance. Using autozygosity mapping, we have identified a homozygous region of approximately 1 cM at chromosome 11q25, in affected individuals. A maximum two-point LOD score of 3.42 (recombination fraction straight theta = .00) was obtained with marker D11S968. This is the first genetic locus to be described that is involved in the molecular pathogenesis of histiocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号