首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody-based microarrays are a rapidly evolving affinity-proteomic methodology that recently has shown great promise in clinical applications. The resolution of these proteomic analyses is, however, directly related to the number of data-points, i.e. antibodies, included on the array. Currently, this is a key bottleneck because of limited availability of numerous highly characterized antibodies. Here, we present a conceptually new method, denoted global proteome survey, opening up the possibility to probe any proteome in a species-independent manner while still using a limited set of antibodies. We use context-independent-motif-specific antibodies directed against short amino acid motifs, where each motif is present in up to a few hundred different proteins. First, the digested proteome is exposed to these antibodies, whereby motif-containing peptides are enriched, which then are detected and identified by mass spectrometry. In this study, we profiled extracts from human colon tissue, yeast cells lysate, and mouse liver tissue to demonstrate proof-of-concept.  相似文献   

2.
Application of Mass Spectrometry in Proteomics   总被引:6,自引:0,他引:6  
Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from highly complex mixtures include accurate mass measurement of peptides derived from total proteome digests and multidimensional peptide separations coupled with mass spectrometry. Mass spectrometric analysis of intact proteins permits the characterisation of protein isoforms. Recent developments in stable isotope labelling techniques and chemical tagging allow the mass spectrometry based differential display and quantitation of proteins, and newly established affinity procedures enable the targeted characterisation of post-translationally modified proteins. Finally, advances in mass spectrometric imaging allow the gathering of specific information on the local molecular composition, relative abundance and spatial distribution of peptides and proteins in thin tissue sections.  相似文献   

3.
Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.  相似文献   

4.
Ahrens CH  Brunner E  Hafen E  Aebersold R  Basler K 《Fly》2007,1(3):182-186
Proteomic analyses are critically important for systems biology because important aspects related to the structure, function and control of biological systems are only amenable by direct protein measurements. It has become apparent that the current proteomics technologies are unlikely to allow routine, quantitative measurements of whole proteomes. We have therefore suggested and largely implemented a two-step strategy for quantitative proteome analysis. In a first step, the discovery phase, the proteome observable by mass spectrometry is extensively analyzed. The resulting proteome catalog can then be used to select peptides specific to only one protein, so-called proteotypic peptides (PTPs). It represents the basis to realize sensitive, robust and reproducible measurements based on targeted mass spectrometry of these PTPs in a subsequent scoring phase. In this Extra View we describe the need for such proteome catalogs and their multiple benefits for catalyzing the shift towards targeted quantitative proteomic analysis and beyond. We use the Insulin signaling cascade as a representative example to illustrate the limitations of currently used proteomics approaches for the specific analysis of individual pathway components, and describe how the recently published Drosophila proteome catalog already helped to overcome many of these limitations.  相似文献   

5.
Antibody‐based microarrays is a rapidly evolving technology that has gone from the first proof‐of‐concept studies to more demanding proteome profiling applications, during the last years. Miniaturized microarrays can be printed with large number of antibodies harbouring predetermined specificities, capable of targeting high‐ as well as low‐abundant analytes in complex, nonfractionated proteomes. Consequently, the resolution of such proteome profiling efforts correlate directly to the number of antibodies included, which today is a key limiting factor. To overcome this bottleneck and to be able to perform in‐depth global proteome surveys, we propose to interface affinity proteomics with MS‐based read‐out, as outlined in this technical perspective. Briefly, we have defined a range of peptide motifs, each motif being present in 5–100 different proteins. In this manner, 100 antibodies, binding 100 different motifs commonly distributed among different proteins, would potentially target a protein cluster of 104 individual molecules, i.e. around 50% of the nonredundant human proteome. Notably, these motif‐specific antibodies would be directly applicable to any proteome in a specie independent manner and not biased towards abundant proteins or certain protein classes. The biological sample is digested, exposed to these immobilized antibodies, whereby motif‐containing peptides are specifically captured, enriched and subsequently detected and identified using MS.  相似文献   

6.
The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.  相似文献   

7.
A novel gel-free proteomic technology was used to identify more than 800 proteins from 50 million Escherichia coli K12 cells in a single analysis. A peptide mixture is first obtained from a total unfractionated cell lysate, and only the methionine-containing peptides are isolated and identified by mass spectrometry and database searching. The sorting procedure is based on the concept of diagonal chromatography but adapted for highly complex mixtures. Statistical analysis predicts that we have identified more than 40% of the expressed proteome, including soluble and membrane-bound proteins. Next to highly abundant proteins, we also detected low copy number components such as the E. coli lactose operon repressor, illustrating the high dynamic range. The method is about 100 times more sensitive than two-dimensional gel-based methods and is fully automated. The strongest point, however, is the flexibility in the peptide sorting chemistry, which may target the technique toward quantitative proteomics of virtually every class of peptides containing modifiable amino acids, such as phosphopeptides, amino-terminal peptides, etc., adding a new dimension to future proteome research.  相似文献   

8.
9.
Generating proteomic maps of membrane proteins, common targets for therapeutic interventions and disease diagnostics, has turned out to be a major challenge. Antibody-based microarrays are among the novel rapidly evolving proteomic technologies that may enable global proteome analysis to be performed. Here, we have designed the first generation of a scaleable human recombinant scFv antibody microarray technology platform for cell surface membrane proteomics as well as glycomics targeting intact cells. The results showed that rapid and multiplexed profiling of the cell surface proteome (and glycome) could be performed in a highly specific and sensitive manner and that differential expression patterns due to external stimuli could be monitored.  相似文献   

10.
Two-dimensional liquid chromatography (2D-LC) coupled on-line with electrospray ionization tandem mass spectrometry (2D-LC-ESI-MS/MS) is a new platform for analysis and identification of proteome. Peptides are separated by 2D-LC and then performed MS/MS analysis by tandem MS/MS. The MS/MS data are searched against database for protein identification. In one 2D-LC-ESI-MS/MS run, we obtained not only the structural information of peptides directly from MS/MS, but also the retention time of peptides eluted from LC. Information on the chromatographic behavior of peptides can assist protein identification in the new platform for proteomics. The retention time of the matching peptides of the identified protein was predicted by the hydrophobic contribute of each amino acid on reversed-phase liquid chromatography (RPLC). By using this strategy proteins were identified by four types of information: peptide mass fingerprinting (PMF), sequence query, and MS/MS ions searched and the predicted retention time. This additional information obtained from LC could assist protein identification with no extra experimental cost.  相似文献   

11.
High throughput proteome screening for biomarker detection   总被引:6,自引:0,他引:6  
Mass spectrometry-based quantitative proteomics has become an important component of biological and clinical research. Current methods, while highly developed and powerful, are falling short of their goal of routinely analyzing whole proteomes mainly because the wealth of proteomic information accumulated from prior studies is not used for the planning or interpretation of present experiments. The consequence of this situation is that in every proteomic experiment the proteome is rediscovered. In this report we describe an approach for quantitative proteomics that builds on the extensive prior knowledge of proteomes and a platform for the implementation of the method. The method is based on the selection and chemical synthesis of isotopically labeled reference peptides that uniquely identify a particular protein and the addition of a panel of such peptides to the sample mixture consisting of tryptic peptides from the proteome in question. The platform consists of a peptide separation module for the generation of ordered peptide arrays from the combined peptide sample on the sample plate of a MALDI mass spectrometer, a high throughput MALDI-TOF/TOF mass spectrometer, and a suite of software tools for the selective analysis of the targeted peptides and the interpretation of the results. Applying the method to the analysis of the human blood serum proteome we demonstrate the feasibility of using mass spectrometry-based proteomics as a high throughput screening technology for the detection and quantification of targeted proteins in a complex system.  相似文献   

12.
13.
The cell division cycle of the yeast S. cerevisiae is driven by one Cdk (cyclin-dependent kinase), which becomes active when bound to one of nine cyclin subunits. Elucidation of Cdk substrates and other Cdk-associated proteins is essential for a full understanding of the cell cycle. Here, we report the results of a targeted proteomics study using affinity purification coupled to mass spectrometry. Our study identified numerous proteins in association with particular cyclin-Cdk complexes. These included phosphorylation substrates, ubiquitination-degradation proteins, adaptors, and inhibitors. Some associations were previously known, and for others, we confirmed their specificity and biological relevance. Using a hypothesis-driven mass spectrometric approach, we also mapped in vivo phosphorylation at Cdk consensus motif-containing peptides within several cyclin-associated candidate Cdk substrates. Our results demonstrate that this approach can be used to detect a host of transient and dynamic protein associations within a biological module.  相似文献   

14.
Conserved ATP-dependent proteases ensure the quality control of mitochondrial proteins and control essential steps in mitochondrial biogenesis. Recent studies demonstrated that non-assembled mitochondrially encoded proteins are degraded to peptides and amino acids that are released from mitochondria. Here, we have characterized peptides extruded from mitochondria by mass spectrometry and identified 270 peptides that are exported in an ATP- and temperature-dependent manner. The peptides originate from 51 mitochondrially and nuclearly encoded proteins localized mainly in the matrix and inner membrane, indicating that peptides generated by the activity of all known mitochondrial ATP-dependent proteases can be released from the organelle. Pulse-labeling experiments in logarithmically growing yeast cells revealed that approximately 6-12% of preexisting and newly imported proteins is degraded and contribute to this peptide pool. Under respiring conditions, we observed an increased proteolysis of newly imported proteins that suggests a higher turnover rate of respiratory chain components and thereby rationalizes the predominant appearance of representatives of this functional class in the detected peptide pool. These results demonstrated a constant efflux of peptides from mitochondria and provided new insight into the stability of the mitochondrial proteome and the efficiency of mitochondrial biogenesis.  相似文献   

15.
To improve the efficiency, accuracy, reproducibility, throughput and proteome coverage of mass spectrometry-based quantitative approaches, both in vitro and in vivo tagging of particular amino acid residues of cellular proteins have been introduced to assist mass spectrometry for global-scale comparative studies of differentially expressed proteins/modifications between different biologically relevant cell states or cells at different pathological states. The basic features of these methods introduce pair-wise isotope signals of each individual peptide containing a particular type of tagged amino acid (amino acid-coded mass tagging) that originated from different cell states. In this review, the applications of major amino acid-coded mass tagging-based quantitative proteomics approaches, including isotope-coded affinity tag, isobaric tags for relative and absolute quantification (iTRAQ) and stable isotope labeling by amino acids in cell culture are summarized in the context of their respective strengths/weakness in identifying those differentially expressed or post-translational modified proteins regulated by particular cellular stress on a genomic scale in a high-throughput manner. Importantly, these gel-free, in-spectra quantitative mechanisms have been further explored to identify/characterize large-scale protein-protein interactions involving various functional pathways. Taken together, the information about quantitative proteome changes, including multiple regulated proteins and their interconnected relationships, will provide an important insight into the molecular mechanisms, where novel targets for diagnosis and therapeutic intervention will be identified.  相似文献   

16.
The combination of isotope coded affinity tag (ICAT) reagents and tandem mass spectrometry constitutes a new method for quantitative proteomics. It involves the site-specific, covalent labeling of proteins with isotopically normal or heavy ICAT reagents, proteolysis of the combined, labeled protein mixture, followed by the isolation and mass spectrometric analysis of the labeled peptides. The method critically depends on labeling protocols that are specific, quantitative, general, robust, and reproducible. Here we describe the systematic evaluation of important parameters of the labeling protocol and describe optimized labeling conditions. The tested factors include the ICAT reagent concentration, the influence of the protein, SDS, and urea concentrations on the labeling reaction, and the reaction time. We demonstrate that using the optimized conditions specific and quantitative labeling was achieved on standard proteins as well as in complex protein mixtures such as a yeast cell lysate.  相似文献   

17.
We have developed a proteomics technology featuring on-line three-dimensional liquid chromatography coupled to tandem mass spectrometry (3D LC-MS/MS). Using 3D LC-MS/MS, the yeast-soluble, urea-solubilized peripheral membrane and SDS-solubilized membrane protein samples collectively yielded 3019 unique yeast protein identifications with an average of 5.5 peptides per protein from the 6300-gene Saccharomyces Genome Database searched with SEQUEST. A single run of the urea-solubilized sample yielded 2255 unique protein identifications, suggesting high peak capacity and resolving power of 3D LC-MS/MS. After precipitation of SDS from the digested membrane protein sample, 3D LC-MS/MS allowed the analysis of membrane proteins. Among 1221 proteins containing two or more predicted transmembrane domains, 495 such proteins were identified. The improved yeast proteome data allowed the mapping of many metabolic pathways and functional categories. The 3D LC-MS/MS technology provides a suitable tool for global proteome discovery.  相似文献   

18.
The recent and sudden outbreak of monkeypox in numerous non-endemic countries requires expanding its surveillance immediately and understanding its origin and spread. As learned from the COVID-19 pandemic, appropriate detection techniques are crucial to achieving such a goal. Mass spectrometry has the advantages of a rapid response, low analytical interferences, better precision, and easier multiplexing to detect various pathogens and their variants. In this proteomic dataset, we report experimental data on the proteome of the monkeypox virus (MPXV) recorded by state-of-the-art shotgun proteomics, including data-dependent and data-independent acquisition for comprehensive coverage. We highlighted 152 viral proteins, corresponding to an overall proteome coverage of 79.5 %. Among the 1371 viral peptides detected, 35 peptides with the most intense signals in mass spectrometry were selected, representing a subset of 13 viral proteins. Their relevance as potential candidate markers for virus detection by targeted mass spectrometry is discussed. This report should assist the rapid development of mass spectrometry-based tests to detect a pathogen of increasing concern.  相似文献   

19.
To improve the efficiency, accuracy, reproducibility, throughput and proteome coverage of mass spectrometry-based quantitative approaches, both in vitro and in vivo tagging of particular amino acid residues of cellular proteins have been introduced to assist mass spectrometry for global-scale comparative studies of differentially expressed proteins/modifications between different biologically relevant cell states or cells at different pathological states. The basic features of these methods introduce pair-wise isotope signals of each individual peptide containing a particular type of tagged amino acid (amino acid-coded mass tagging) that originated from different cell states. In this review, the applications of major amino acid-coded mass tagging-based quantitative proteomics approaches, including isotope-coded affinity tag, isobaric tags for relative and absolute quantification (iTRAQ?) and stable isotope labeling by amino acids in cell culture are summarized in the context of their respective strengths/weakness in identifying those differentially expressed or post-translational modified proteins regulated by particular cellular stress on a genomic scale in a high-throughput manner. Importantly, these gel-free, in-spectra quantitative mechanisms have been further explored to identify/characterize large-scale protein–protein interactions involving various functional pathways. Taken together, the information about quantitative proteome changes, including multiple regulated proteins and their interconnected relationships, will provide an important insight into the molecular mechanisms, where novel targets for diagnosis and therapeutic intervention will be identified.  相似文献   

20.
Understanding the progression of periodontal tissue destruction is at the forefront of periodontal research. The authors aimed to capture the dynamics of gingival tissue proteome during the initiation and progression of experimental (ligature‐induced) periodontitis in mice. Pressure cycling technology (PCT), a recently developed platform that uses ultra‐high pressure to disrupt tissues, is utilized to achieve efficient and reproducible protein extraction from ultra‐small amounts of gingival tissues in combination with liquid chromatography‐tandem mass spectrometry (MS). The MS data are processed using Progenesis QI and the regulated proteins are subjected to METACORE, STRING, and WebGestalt for functional enrichment analysis. A total of 1614 proteins with ≥2 peptides are quantified with an estimated protein false discovery rate of 0.06%. Unsupervised clustering analysis shows that the gingival tissue protein abundance is mainly dependent on the periodontitis progression stage. Gene ontology enrichment analysis reveals an overrepresentation in innate immune regulation (e.g., neutrophil‐mediated immunity and antimicrobial peptides), signal transduction (e.g., integrin signaling), and homeostasis processes (e.g., platelet activation and aggregation). In conclusion, a PCT‐assisted label‐free quantitative proteomics workflow that allowed cataloging the deepest gingival tissue proteome on a rapid timescale and provided novel mechanistic insights into host perturbation during periodontitis progression is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号