首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanide-resistant respiration (CRR) is a widespread metabolic pathway among yeasts, that involves a mitochondrial alternative oxidase sensitive to salicylhydroxamic acid (SHAM). The physiological role of this pathway has been obscure. We used the yeasts Debaryomyces hansenii and Pichia membranifaciens to elucidate the involvement of CRR in energy conversion. In both yeasts the adenosine triphosphate (ATP) content was still high in the presence of antimycin A or SHAM, but decreased to low levels when both inhibitors were present simultaneously, indicating that CRR was involved in ATP formation. Also the mitochondrial membrane potential (Delta Psi(m)), monitored by fluorescent dyes, was relatively high in the presence of antimycin A and decreased upon addition of SHAM. In both yeasts the presence of complex I was confirmed by the inhibition of oxygen consumption in isolated mitochondria by rotenone. Comparing in the literature the occurrence of CRR and of complex I among yeasts, we found that CRR and complex I were simultaneously present in 12 out of 13 yeasts, whereas in six out of eight yeasts in which CRR was absent, complex I was also absent. Since three phosphorylating sites are active in the main respiratory chain and only one in CRR, we propose a role for this pathway in the fine adjustment of energy provision to the cell.  相似文献   

2.
The addition of antimycin A during the logarithmic phase of growth of heterotrophic Euglena gracilis cultures (in lactate or glucose medium) was immediately followed by decreased respiration and a cessation of grwoth. Induced cyanideresistent respiration appeared 5 h after the addition of the inhibitor then the cells started to grow again and could be cultured in the presence of antimycin A. Thus the cells exhibited a cyanide-and antimycin-resistant respiration which was, in addition, sensitive to salicylhydroxamic acid and propylgallate. Antimycin-adapted Euglena and control cells were compared for their biomass production and protein synthesis. The difference in growth yield between control and antimycin-adapted cells was not as high as would be expected if only the first phosphorylation site of the normal respiratory chain was active in the presence of antimycin A. Furthermore, the ability to incorporate labelled valine into proteins, under resting-cell conditions, was not changed. Strong correlations were established between the effects of respiratory effectors on O2 consumption and valine incorporation. These results suggest that sufficient energy for protein synthesis and growth is provided by the operation of the cyanide-resistant respiratory pathway in antimycin-adapted Euglena.Abbreviations DNP dinitrophenol - PG propylgallate - SHAM salicylhydroxamic acid  相似文献   

3.
Usual concentrations of antimycin A, rotenone and EDTA, individally or in combination, reduced aerobic growth rate and cell yield of Candida albicans to about half its normal level and to about the levels of previously-described acetate-negative, cytochrome-complete and aa3-deficient variants which were little affected by the inhibitors. Anaerobic conditions (not affected by antimycin A) reduced growth rate and cell yield of all cultures-including that of a nonrespiring aa3, b-deficient mutant-to low, equal levels. Antimycin A but not rotenone prevented growth of the normal strain on ethanol medium. Cyanide and antimycin A blocked most of the respiration of the normal strain and cytochrome-complete variant, but did not affect that of the cytochrome aa3-deficient mutant. Rotenone and EDTA did not affect respiration of any of the cultures. SHAM blocked cyanide- and antimycin A-insensitive respiration and prolonged the lag phases of the three respiring cultures, especially in the presence of antimycin A, but alone increased oxygen-uptake rate of the cytochromecomplete cultures while curtailing that of the cytochrome aa3-deficient mutant. Resting cells, especially wild-type, grown in medium containing antimycin A exhibited lowered oxygen-uptake rate, which was increased upon the addition of cyanide or antimycin A. Antimycin A stimulated, but cyanide inhibited, respiration of cytochrome-complete cultures grown in the presence of rotenone but did not affect that of the cytochrome aa3-deficient mutant. SHAM inhibited respiration of all antimycin A- or rotenone-grown cultures. The high rate of respiration of C. albicans in the presence of inhibitors for three sites of electron transport in the conventional oxidative pathway, the inhibition of this respiration by SHAM and its loss by the absence of cytochrome b, indicate an alternate oxidative pathway in this organism which crosses the conventional one at cytochrome b.This work was supported by Public Health Service Graduate Dental Training Grant DE 00144 and the Graduate School and the Department of Microbiology, Southern Illinois University.  相似文献   

4.
Candida albicans contains a cryptic cyanide and antimycin A insensitive respiratory system. This alternate oxidase was found (i) at all growth rates from =0.05 to 0.26 in a chemostat culture and (ii) in both mycelial and yeast forms of the organism. Neither chloramphenicol nor cycloheximide prevented the expression of the alternate oxidase. Salicyl-hydroxamic acid was a potent inhibitor of the cyanide insensitive respiration. The respiration of mitochondria grown in the presence of antimycin A was not inhibited by cyanide or antimycin A but was inhibited by salicylhydroxamic acid.Abbreviations KCN potassium cyanide - SHAM salicyl hydroxamic acid  相似文献   

5.
Candida parapsilosis mitochondria contain three respiratory chains: the classical respiratory chain (CRC), a secondary parallel chain (PAR) and an “alternative” oxidative pathway (AOX). We report here the existence of similar pathways in C. albicans. To observe the capacity of each pathway to sustain yeast growth, C. albicans cells were cultured in the presence of inhibitors of these pathways. Antimycin A and KCN totally abrogated yeast growth, while rotenone did not prevent proliferation. Furthermore, rotenone promoted only partial respiratory inhibition. Lower concentrations of KCN that promote partial inhibition of respiration did not inhibit yeast growth, while partial inhibition of respiration with antimycin A did. Similarly, AOX inhibitor BHAM decreased O2 consumption slightly but completely stunted cell growth. Reactive oxygen species production and oxidized glutathione levels were enhanced in cells treated with antimycin A or BHAM, but not rotenone or KCN. These findings suggest that oxidative stress prevents C. albicans growth.  相似文献   

6.
In this paper evidence is presented for the mitochondrial localization of the antimycin A (AA) + salicylhydroxamate (SHAM)-insensitive respiration of the yeasts Kluyveromyces lactis, Endomycopsis capsularis and Hansenula saturnus. Such a respiration, which can be sustained by NADH and NADPH but not by succinate, is inhibited by high concentrations of azide. AA + SHAM-insensitive respiration is not phosphorylating and its postulated physiological role is to oxidize NADH.The research has been supported by a grant of Ministero della Publica Istruzione and of C.N.R.  相似文献   

7.
The contribution of the alternative pathway in root respiration of Pisum sativum L. cv Rondo, Plantago lanceolata L., and Plantago major L. ssp major was determined by titration with salicylhydroxamate (SHAM) in the absence and presence of cyanide. SHAM completely inhibited the cyanide-resistant component of root respiration at 5 to 10 millimolar with an apparent Ki of 600 micromolar. In contrast, SHAM enhanced pea root respiration by 30% at most, at concentrations below 15 millimolar. An unknown oxidase appeared to be responsible for this stimulation. Its maximum activity in the presence of low SHAM concentrations (1-5 millimolar) was 40% of control respiration rate in pea roots, since 25 millimolar SHAM resulted in 10% inhibition. In plantain roots, the maximum activity was found to be 15%. This hydroxamate-activated oxidase was distinct from the cytochrome path by its resistance to antimycin. The results of titrations with cyanide and antimycin indicated that high SHAM concentrations (up to 25 millimolar) block the hydroxamate-activated oxidase, but do not affect the cytochrome path and, therefore, are a reliable tool for estimating the activity of the alternative path in vivo. A considerable fraction of root respiration was mediated by the alternative path in plantain (45%) and pea (15%), in the latter because of the saturation of the cytochrome path.  相似文献   

8.
The growth rate of Phycomyces blakesleeanus sporangiophores was found to be very sensitive to sudden changes in the oxygen concentration. A change from 20% to 15% oxygen elicits a transient decrease in the growth rate which returns to normal 10 min after altering the concentration. After a step change to 10% oxygen, the growth rate shows two minima at 6–8 and 30–35 min and it reaches about 80% of its original value 50 min after this change. A threshold curve for this negative growth response shows that sporangiophores begin to sense a decrease in the oxygen concentration from 20% to 17%. Seven phototropically abnormal mutants with defects in the genes madA to madG were tested for the oxygen response. Two strains, C149madD120 and C316madF48, were found to have recoveries different from those of the wild type after step changes from 20% to 10% oxygen.  相似文献   

9.
10.
The affinity of respiration for oxygen in the roots of six Senecio species studied was low compared with the affinity of cytochrome oxidase for oxygen. Half saturation values of approximately 22 μM oxygen were measured. Root respiration was to a large extent insensitive to cyanide in flood-tolerant as well as in flood-sensitive species. The evidence presented suggests that high activity of salicylhydroxamic acid (SHAM)-sensitive oxidase in Senecio roots was the basis for the low oxygen affinity and for the high cyanide-insensitivity of root respiration in the Senecio species. Methods are described to determine the in vivo activity of the SHAM-sensitive oxidase. It was estimated that it contributed 70% to the total root respiration. The presence of SHAM-sensitive oxidase activity could explain a higher efficiency of root growth respiration under a low oxygen tension if this alternate oxidase was inhibited at a low oxygen concentration in the root medium. However, the SHAM-sensitive oxidase was not specifically involved in either growth respiration or maintenance respiration. Its significance in regulation of the redox state of the cells is discussed.  相似文献   

11.
Summary A plasmid, carrying the Tn5 gene for kanamycin resistance lacking its own promoter, has successfully been used in the selection of DNA sequences of the fungus Phycomyces blakesleeanus having promoter activity in Escherichia coli. Many of these sequences were also effective in promoting resistance to kanamycin when the corresponding chimeric plasmids were introduced in the fungus via spheroplast transformation. The selected phenotype was easily propagated through vegetative spores and behaved as a stable character since it was not appreciably lost in the absence of selection.  相似文献   

12.
Cell respiratory activity of protoplasts obtained from the wild type of Neurospora crassa and photoreceptor complex WCC—white collar 1 (wc-1) and white collar 2 (wc-2)—mutants of Neurospora crassa strains was investigated. Respiration inhibition by KCN in the presence of 25 mM succinate was similar in all strains and did not exceed 83–85% against control. The significant induction of KCN-resistant respiratory pathway occurred under 1% glucose oxidation in wc-1 and wc-2 mutants if compared with the wild type strains. The inhibitors of the main (cytochrome) pathway of electron transfer in mitochondria—1 mM KCN and antimycin A (4 μg/ml)—blocked the respiration rate of the protoplasts from N. crassa wild type by 75%, while the cell respiration of wc-1 and wc-2 strains was suppressed by approximately 50%. The specific inhibitor of alternative oxidase—10 mM salicylhydroxamic acid (SHAM)—in combination with the blockers of mitochondrial electron transfer chain caused the total suppression of respiratory activity of protoplasts in all studied strains. It is supposed that an increase of KCN-resistance in WCC mutants under glucose oxidation is connected with alternative oxidase activation as the result of failure in reception and signal transduction of active oxygen species.  相似文献   

13.
Teliospores of Ustilago nuda are exogenously dormant. Germination and respiration of these thick-walled spores were greatly stimulated by glucose. Cycloheximide, actinomycine D, salicylhydroxamic acid and cyanide inhibited germination completely. Dormant spores in water had a R.Q. of about 0.85. However, during early germination in glucose containing media the R.Q. increased to 1.4. The chemical composition of the spores did not change dramatically during early germination. The main reserve compounds of the spores were glycogen and lipid. Trehalose could not be detected. Radiorespirometric as well as enzymatic evidence suggested that glucose was metabolized along glycolysis and the hexose monophosphate pathway. The increasing activity of phosphofructokinase might allow an increased flow through the Embden-Meyerhof-Parnas pathway during early germination.Abbreviations EMP-pathway Embden-Meyerhof-Parnas pathway - HMP-pathway hexose monophosphate pathway - SHAM salicyl-hydroxamic acid - HEPES 4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid - MES 2-morpholinoethanesulfonic acid  相似文献   

14.
Dormant sporangiospores of Phycomyces blakesleeanus were activated by Cs-137 gamma rays. After a dose of about 300 krad, between 80 and 90% of the spores germinated normally. However, further development of the mycelium was inhibited. Even with dry spores a partial activation was obtained. Activation by gamma rays was not accompanied by an increase in trehalase activity.  相似文献   

15.
Summary The mechanism of the control of citric acid accumulation by oxygen was investigated by means of pilot plant fermentation using Aspergillus niger. The critical dissolved oxygen tension (DOT) for oxygen uptake of this fungus was about 18–21 and 23–26 mbar for trophophase and idiophase, respectively. Minimal DOT for citric acid production was about 25 mbar. Citric acid production increased steadily between 40–150 mbar. Short time changes in the DOT produced immediate, irreversible changes in the rate of product formation. Adenine nucleotides paralleled growth but showed no evidence for control function in the oxygen effect on citric acid fermentation. A branched respiratory system was identified by experiments using specific inhibitors (antimycin, cyanide, azide, rotenone, amytal and salicylhydroxamic acid). Growth was sensitive towards inhibitors of the standard respiratory chain, but only slightly sensitive towards salicylhydroxamic acid (SHAM). Citric acid synthesis was highly sensitive towards SHAM during trophophase, but sensitive towards antimycine during idiophase. Interruptions in aeration cause an impairment of the SHAM sensitive oxidase during trophophase, and of the antimycin sensitive oxidase during idiophase.Dedicated to emeritus Professor Dr. Richard Brunner on the occasion of his 80th birthday  相似文献   

16.
The patterns of cellular metabolites related to redox status and sucrose biosynthesis in mesophyll protoplasts of pea (Pisum sativum L.) were examined in the absence or presence of oligomycin (inhibitor of oxidative phosphorylation) or antimycin A (inhibitor of cytochrome pathway) or salicylhydroxamic acid (SHAM) (inhibitor of alternative pathway). The increase on illumination in the rate of photosynthesis or cellular metabolites was more at optimal CO2 (1.0 mM NaHCO3) compared to that at limiting CO2 (0.1 mM NaHCO3). Furthermore, the inhibition of photosynthesis in presence of mitochondrial inhibitors was more pronounced at optimal CO2 than that at limiting CO2. There was a marked increase in steady-state levels of triose-P/PGA (phosphoglyceric acid) and glucose-6-phosphate (Glc-6-P) in the presence of oligomycin and antimycin A. In contrast, SHAM caused a marked increase in malate/OAA (oxaloacetate). We suggest that dissipation of excess redox equivalents generated in photosynthesis occurs through both cytochrome and alternative pathways, while sucrose biosynthesis is backed up by cytochrome pathway alone. Thus, mitochondrial respiration (through both cytochrome and alternative pathways of mitochondrial electron transport) optimizes chloroplast photosynthesis by modulating cellular metabolites related to both intracellular redox state and sucrose biosynthesis.  相似文献   

17.
Screening cultures are usually non-monitored and non-controlled due to a lack of appropriate measuring techniques. A new device for online measurement of oxygen transfer rate (OTR) in shaking-flask cultures was used for monitoring the screening of Hansenula polymorpha. A shaking frequency of 300 rpm and a filling volume of 20 ml in 250-ml flasks ensured a sufficient oxygen transfer capacity of 0.032 mol (l h)–1 and thus a respiration not limited by oxygen. Medium buffered with 0.01 mol phosphate l–1 (pH 6.0) resulted in pH-inhibited respiration, whereas buffering with 0.12 mol phosphate l–1 (pH 4.1) resulted in respiration that was not inhibited by pH. The ammonium demand was balanced by establishing fixed relations between oxygen, ammonium, and glycerol consumption with 0.245±0.015 mol ammonium per mol glycerol. Plate precultures with complex glucose medium reduced the specific growth rate coefficient to 0.18 h–1 in subsequent cultures with minimal glycerol medium. The specific growth rate coefficient increased to 0.26 h–1 when exponentially growing precultures with minimal glycerol medium were used for inoculation. Changes in biomass, glycerol, ammonium, and pH over time were simulated on the basis of oxygen consumption.  相似文献   

18.
Zusammenfassung Es wurde der Einfluß der Kationen Na+, K+, Ca2+ und NH 4 + in Verbindung mit dem Anion Acetat auf die Keimungsrate einigerPhycomyces-Stämme (P. blakesleeanus 1+, 2-, 11+ und 18- Sammlung Halbsguth; 188+ und 189-Sammlung Baarn;P. nitens 304+ und 305-Sammlung Baarn) hin untersucht. Es konnte gezeigt werden, daß den Kationen eine wesentliche Rolle im Aktivierungsprozeß zukommt. Förderlich wirkten sich vor allem K+ und Ca2+ Ionen aus. NH 4 + wies keine sichtbar fördernde Wirkung auf, und dem Na- Ion kann eine hemmende Wirkung im besonderen für dieP. blakesleeanus-Stämme 2-, 188+, 189- zugeschrieben werden. Eine vergleichbar empfindliche Reaktion zeigteP. nitens gegenüber Ca2+-Ionen, jedoch nur, wenn höhere Konzentrationen verwendet wurden. Allgemein waren dieP. nitens-Stämme 304+, 305- in ihrer Aktivierbarkeit nicht in dem Maße von den einzelnen Kationen abhängig wie dieP. blakesleeanus-Stämme.Ferner wurde die Wirkung der Wärmeaktivierung auf die Sporenkeimung geprüft. Die günstigste Dauer der Wärmeaktivierung bei 50°C lag für dieP. blakesleeanus-Stämme bei 5 min; dieP. nitens-Stämme vertrugen noch eine Zeit von 40 min (50°C) ohne erkennbare Schädigung.Die Aktivierbarkeit der Sporangiosporen in Abhängigkeit vom Aktivierungsagens (Acetat bzw. Wärme) zeigte deutliche Unterschiede zwischen denP. blakesleeanus- undP. nitens-Stämmen.
Activating of germination dependent on lons of sporangiospores ofPhycomyces blakesleeanus andP. nitens, demonstrated on various strains
The influence of cations Na+, K+, Ca2+ and NH 4 + in connection with anion acetate on the rate of germination was studied for severalPhycomyces strains (P. blakesleeanus 1+, 2-, 11+, 18- collection Halbsguth; 188+, 189- collection Baarn;P. nitens 304+ and 305- collection Baarn). Cations played an important role during the activating process; NH 4 + did not further the effect. The Na+ ion inhibited. The inhibition was marked onP. blakesleeanus strains 2-, 188+ and 189-. A comparable sensitive reaction ofP. nitens was apparent towards Ca2+ ions, when higher concentrations were used. Generally activations ofP. nitens strains 304+ or 305- were not influenced by the different cations as much as were theP. blakesleeanus strains.Furthermore the effect of heat activation on spore germination was tested. The most favourable time period for heat activation at 50°C was 5 min for theP. blakesleeanus strains, while theP. nitens strains tolerated a period of 40 min at 50°C without any detectable damage (90% germinated spores).The ability ofPhycomyces sporangiospores to be activated showed differences between theP. blakesleeanus andP. nitens strains depending on the activating agent (heat or acetate).
  相似文献   

19.
The possible role of L-ascorbate (AsA) as a biochemical signal during the interactions between photosynthesis and respiration was examined in leaf discs of Arabidopsis thaliana. AsA content was either decreased as in AsA-deficient vtc1 mutants or increased by treatment with L-galactono-1, 4-lactone (L-GalL, a precursor of AsA; EC 1.3.2.3). In mutants, photosynthesis was extremely sensitive to both antimycin A (inhibitor of the cytochrome c oxidase pathway [COX pathway]) and salicylhydroxamic acid (SHAM, inhibitor of the alternative pathway [AOX pathway]), particularly at high light conditions. Mitochondrial inhibitors lowered the ratio of reduced AsA to total AsA, at high light, indicating oxidative stress in leaf discs. Elevation of AsA by L-GalL decreased the sensitivity of photosynthesis at high light to antimycin A or SHAM, sustained photosynthesis at supraoptimal light and relieved the extent of photoinhibition. High ratios of reduced AsA to total AsA in L-GalL-treated leaf discs suggests that L-GalL lowers oxidative stress. The protection by L-GalL of photosynthesis against the mitochondrial inhibitors and photoinhibition was quite pronounced in vtc1 mutants. Our results suggest that the levels and redox state of AsA modify the pattern of modulation of photosynthesis by mitochondrial metabolism. The extent of the AOX pathway as a percentage of the total respiration in Arabidopsis mesophyll protoplasts was much higher in vtc1 than in wild type. We suggest that the role of AsA becomes pronounced at high light and/or when the AOX pathway is inhibited. While acknowledging the importance of the COX pathway, we hypothesize that AsA and the AOX pathway may complement each other to protect photosynthesis against photoinhibition.  相似文献   

20.
The effects of the Ca2+/H+ exchanger A23187 and the K+/H+ exchanger nigericin, the electrogenic membrane-potential depleters valinomycin and CCCP, and the calcium channel blockers ruthenium red, nifedipine, and nitrendipine on the apical growth of Phycomyces blakesleeanus were analyzed. While all of the compounds inhibited the growth of germlings in liquid medium, the Ca2+ channel blockers were the least effective. Chitin synthesis in vivo was also sensitive to the inhibitors; here again, the calcium channel blockers were less efficient, and their effect occurred after a lag phase, in contrast to the electroneutral ionophores whose effects were immediate. The ionophores rapidly inhibited protein secretion, and reduced the number of secretory vesicles and chitosomes in the hyphal apex of P. blakesleeanus. The results suggest that not only tip-to-base calcium gradients but also transmembrane ionic gradients and membrane potential have a role in the apical growth of P. blakesleeanus. They are probably involved in the formation, migration, and/or fusion with the plasmalemma of secretory vesicles and chitosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号