首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
VA菌根降低植物对重金属镉的吸收   总被引:5,自引:0,他引:5  
高等植物在漫长的进化过程中对环境产生种种适应机制。菌根的形成即是对自然土壤中有效磷不足的一种适应。菌根真菌与寄主根系共生形成菌根后,真菌的菌丝可以远远伸出根际范围从而扩大了植物对土壤中难以移动的磷元素的吸收范围而改善植物的磷素营养。因此,地球上90%的陆生植物都可形成菌根。菌根的形成,不仅促进了植物对磷的吸收,而且也影响到植物对其它元素包括重金属的吸收。在重金属污染的土壤中,菌根对植物重金属的吸收将影响到植物对重金属的抗性和农产品品质。本文拟研究在添加镉的土壤上菌根对植物吸收Cd的影响。  相似文献   

2.
黄艺  陈有 《应用生态学报》2002,13(7):859-862
为了了解重金属Cu、Zn、Pb、Cd在土壤-根际-植物系统中的行为,揭示VAM植物减弱土壤中过量重金属对植物生理毒的抗性机理,采用原子吸收光谱测定Cu、Zn、Pb、Cd在污灌土壤中生长的VA菌根玉米和无菌根玉米中的积累和分布,并用连接形态分析技术分析了菌根际中Cu、Zn、Pb、Cd的形态分布和变化趋势,结果表明,Cu、Zn、Pb、Cd在菌根玉米中的积累量比非攻根中积累量分别减少10%、18%和29%,Cd积累量没有改变,生长7周后,菌根玉米是非菌根玉米生物量的1.5倍,与对照土壤相比,根际中除Cu交换态显著增加外,Zn、Pb、Cd各形态相对改变量显著大于非菌根,且菌根根际上中Cu、Zn、Pb有机结合态增加量显著大于非根际土,说明菌根际金属向稳定状态转移的程度显著大于非菌根际,同时,讨论了根际金属形态对金属有效性的影响,及其与菌根植物金属抗性机理的关系。  相似文献   

3.
菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响   总被引:62,自引:6,他引:56  
采用根垫法和连续形态分析技术,分析了生长在污灌土壤中菌根小麦和无菌根小麦根际Cu、Zn、Pb、Cd的形态分布和变化趋势。结果表明,下对照土壤相比,菌根际土壤中交换态Cu含量显著增加,交换态Cd呈减少的趋势;与非菌根际相比,Cu、Zn、Pb的有机结合态在菌根根际中显著增加,而4种测定金属2的碳酸盐态和铁锰氧化态都没有显著改变,该结果表明,植物根系能影响根际中金属形态的变化,且菌根比无菌根的影响程度大  相似文献   

4.
研究了不同成熟度的森林中主要优势树种菌根侵染程度、植物养分与根际土壤磷酸酶活性的变化规律, 试图探讨自然生态系统中菌根真菌影响下的磷循环特征。结果表明, 1)土壤磷酸酶活性在土壤有效磷含量低的森林群落高于土壤有效磷含量高的森林群落。季风常绿阔叶林0-10 cm 和10-20 cm 土层的土壤有效磷含量皆低于马尾松林, 该林型非根际土壤的磷酸酶活性(6.66 ± 0.69 molg–1h–1)则显著高于马尾松林(3.97 ± 1.05 molg–1h–1)。2)磷酸酶活性在根际和非根际土壤中存在差异, 群落中优势树种根际土壤磷酸酶活性高于非根际土壤。3)由于植物缺磷往往表现为成熟叶片磷含量低, 成熟叶片磷含量与根际土壤磷酸酶活性的显著负相关关系(R2=0.5416, P<0.0001)表明, 磷限制可能是诱导磷酸酶产生的驱动力之一。菌根形成对于促进菌根共生体分泌磷酸酶, 缓解土壤磷限制, 提高植物磷吸收效率具有重要作用。  相似文献   

5.
丛枝菌根化翅果油树幼苗根际土壤微环境   总被引:7,自引:0,他引:7       下载免费PDF全文
以我国二级濒危保护植物翅果油(Elaeagnus mollis)为供试植物, 通过温室盆栽试验, 研究接种丛枝菌根真菌对翅果油树幼苗根际土壤微生态环境的影响。试验设计分4个组: 摩西球囊霉(Glomus mosseae)单独接种组(GM)、脆无梗囊霉(Acaulospora delicata)单独接种组(AD)、混合接种组(GM + AD)、不接种的对照组(CK)。测定了菌根侵染率、生物量、根际微生物数量、土壤pH值、土壤酶活性及其对N、P营养的影响等指标。结果显示: 菌根真菌对3个接种组均有侵染, 其中, GM + AD的侵染率最大(90.5%), 生态学效应最好; 与对照组相比, 接种组的生物量均明显提高(p < 0.05), 其中GM + AD组生物量显著增加, 是CK组的2.2倍; AM菌根对根部微生物种群数量产生一定的影响, 主要是使根面上的细菌、放线菌、固氮菌的数量显著增加(p < 0.05); AM菌根使根际pH值降低, 与菌根侵染率呈显著负相关关系(p < 0.05); 接种组根际土壤磷酸酶、脲酶、蛋白酶的活性增加, 根际土壤的磷酸酶、蛋白酶的活性增加量与菌根侵染率呈极显著相关关系(p < 0.01); 接种组的根际土壤中, 可直接被植物吸收利用的N、P元素出现富集现象, 与菌根侵染率呈显著相关关系(p < 0.05)。研究表明: 丛枝菌根的形成改善了翅果油树幼苗的微生态环境, 提高了根际土壤肥力。  相似文献   

6.
紫椴根际土壤肥力与外生菌根侵染关系   总被引:1,自引:0,他引:1  
调查帽儿山老山生态站紫椴(Tilia amurensis Rupr.)外生菌根的侵染情况与根际土壤肥力指标,结合Pearson相关性分析与逐步回归分析的统计方法,分析紫椴外生菌根侵染率与根际土壤肥力指标的相关性。结果表明:紫椴外生菌根侵染率与碱性磷酸酶、碱解氮、有效磷、土壤水分含量呈极显著负相关,与脲酶呈极显著正相关,与速效钾呈显著正相关。逐步回归分析发现,影响紫椴外生菌根侵染率的主要土壤肥力因子是碱性磷酸酶和土壤水分含量。  相似文献   

7.
泡囊丛枝(VA)菌根对玉米际磷酸酶活性的影响   总被引:9,自引:3,他引:6  
以玉米为材料,利用三室隔网培养方法,研究了缺P土壤上施用植酸和卵磷脂时接种几种菌根真菌(Glomus mosseae,Glmous versiformea,Gigaspora margarita)对根际土壤酸性磷酸酶和碱性磷酸酶活性的影响,玉米生长70d后,收获测定距根表不同距离土壤中的磷酸酶活性,结果表明,接种菌根真菌增加了根际土壤酸性和碱性磷酸酶活性,Gigaspora margarita菌根菌的作用大于其它2个菌极菌,不同P源对磷酸酶活性有明显影响。  相似文献   

8.
张林  丁效东  王菲  田芷源  冯固 《生态学报》2012,32(13):4079-4086
通过30μm尼龙网将根盒分成根室和菌丝室,菌丝室中的低磷土壤施加75 mg P/kg土壤的植酸钙,研究了菌丝室土壤中丛枝菌根(AM)真菌Glomus intraradices和解磷细菌Bacillus megaterium C4对有机磷的矿化和吸收.结果表明,在试验条件下,植酸钙的溶解性很低,对土壤溶液有机磷的贡献不大.接种解磷细菌C4提高了土壤中磷酸酶的活性,减少了土壤中有机磷的含量.但是,由于存在解磷细菌与AM真菌对磷的竞争,解磷细菌矿化出的磷大部分被自身利用,AM真菌的生长受到抑制,解磷细菌对植物磷营养的改善没有表现出显著的贡献.  相似文献   

9.
有机污染土壤中菌根的作用   总被引:7,自引:1,他引:6  
近年来,土壤有机污染问题日益突出,传统的修复方法存在局限性。菌根是植物根系与菌根真菌形成的共生体,能增强植物的逆境抗胁迫能力,对于促进有机污染物的降解和转化具有积极的作用。本文主要阐述了石油、多环芳烃、多氯联苯、农药和酞酸酯等几类典型的有机污染土壤中外生菌根和丛枝菌根的作用;旨在说明利用菌根技术修复有机污染土壤是生物修复的一项重要工具,具有广阔的发展前景,为进一步研究菌根的作用以及更好地运用菌根技术奠定基础。  相似文献   

10.
陈静  陈欣  唐建军 《应用生态学报》2004,15(12):2388-2392
综述了大气CO2浓度升高条件下,植物根际土壤环境、根际土壤微生物和植物菌根形成的变化趋势等方面的研究进展,CO2浓度升高,运转到根系的碳水化合物增加,根际环境、根际微生物活性、微生物群落结构以及菌根共生体的形成发生变化.提出在CO2浓度升高条件下,根际微生物和菌根真菌群落的变化对植物群落和陆地生态系统碳动态的调节是今后的研究趋向。  相似文献   

11.
不同磷源对红三叶草根际和菌根际磷酸酶活性的影响   总被引:17,自引:2,他引:15  
以红三叶草为研究对象,利用三室培养系统,在接种菌根真菌(Glomus mosseae)的条件下研究了不同磷源对根际和菌根际磷酸酶活性的影响,植株生长8周后收获并测定根室、菌丝室的土壤磷酸酶活性、植株干重及含磷量.结果表明,根室酸性磷酸酶活性比碱性磷酸酶活性更裔,接种条件下二者都稍有增加,特别是在供给有机磷(植酸钠)的条件下明显增加了菌丝室土壤磷酸酶活性.接种菌根真菌显著增加了植株干重、磷含量和总磷吸收.施用磷酸二氢钾(KH2PO4)时菌丝吸磷量占吸磷总量的43.1%,而施用植酸钠(Na-phytate)时菌丝吸磷量占吸磷总量的60.8%。  相似文献   

12.
The influence of Glomus intraradices (BEG87) on Pseudomonas fluorescens DF57 in hyphosphere and rhizosphere soil was examined. Cucumis sativus (Aminex, F1 hybrid) was grown in symbiosis with the arbuscular mycorrhizal fungus G. intraradices in PVC tubes, consisting of a central root compartment and two lateral root-free compartments. Two Tn 5 - lux AB-marked strains of P. fluorescens DF57 were used. Strain DF57-P2, which has an insertion of Tn 5::lux AB in a phosphate starvation-inducible locus, was used as a phosphate starvation reporter. Another lux -tagged strain DF57-40E7, which carries a constitutively expressed lux AB fusion, was used as control for strain DF57-P2 and for measuring the metabolic activity of P. fluorescens DF57. A strain of P. fluorescens DF57, which carries a constitutively expressed gfp gene, was used in studies of attachment between the bacteria and the hyphae. G. intraradices decreased the culturability of P. fluorescens DF57 significantly, both in rhizosphere and hyphosphere soil, whereas the total number of P. fluorescens DF57 measured by immunofluorescence microscopy was decreased in hyphosphere soil only. G. intraradices did not induce a phosphorus starvation response in P. fluorescens DF57, and the metabolic activity of the bacteria was not affected by the fungus after 48 h. P. fluorescens DF57 did not attach to G. intraradices hyphae and was not able to use the hyphae as carbon substrate. The negative effect of G. intraradices on culturability and on number of P. fluorescens DF57 in hyphosphere soil is discussed.  相似文献   

13.
Abstract

Colonization of plant roots by arbuscular mycorrhizal fungi can greatly increase the plant uptake of phosphorus and nitrogen. The most prominent contribution of arbuscular mycorrhizal fungi to plant growth is due to uptake of nutrients by extraradical mycorrhizal hyphae. Quantification of hyphal nutrient uptake has become possible by the use of soil boxes with separated growing zones for roots and hyphae. Many (but not all) tested fungal isolates increased phosphorus and nitrogen uptake of the plant by absorbing phosphate, ammonium, and nitrate from soil. However, compared with the nutrient demand of the plant for growth, the contribution of arbuscular mycorrhizal fungi to plant phosphorus uptake is usually much larger than the contribution to plant nitrogen uptake. The utilization of soil nutrients may depend more on efficient uptake of phosphate, nitrate, and ammonium from the soil solution even at low supply concentrations than on mobilization processes in the hyphosphere. In contrast to ectomycorrhizal fungi, nonsoluble nutrient sources in soil are used only to a limited extent by hyphae of arbuscular mycorrhizal fungi. Side effects of mycorrhizal colonization on, for example, plant health or root activity may also influence plant nutrient uptake.  相似文献   

14.
The extraradical hyphae of arbuscular mycorrhizal fungi (AMF) harbour and interact with a microbial community performing multiple functions. However, how the AMF‐microbiome interaction influences the phosphorus (P) acquisition efficiency of the mycorrhizal pathway is unclear. Here we investigated whether AMF and their hyphal microbiome play a role in promoting organic phosphorus (P) mineralizing under field conditions. We developed an AMF hyphae in‐growth core system for the field using PVC tubes sealed with membrane with different size of pores (30 or 0.45 μm) to allow or deny AMF hyphae access to a patch of organic P in root‐free soil. AMF and their hyphae associated microbiome played a role in enhancing soil organic P mineralization in situ in the field, which was shown to be a function of the change in bacteria community on the hyphae surface. The bacterial communities attached to the AMF hyphae surface were significantly different from those in the bulk soil. Importantly, AMF hyphae recruited bacteria that produced alkaline phosphatase and provided a function that was absent from the hyphae. These results demonstrate the importance of understanding trophic interactions to be able to gain insight into the functional controls of nutrient cycles in the rhizosphere.  相似文献   

15.
Common mycorrhizal network (CMN) allows nutrients and signals to pass between two or more plants. In this study, trifoliate orange (Poncirus trifoliata) and white clover (Trifolium repens) were planted in a two-compartmented rootbox, separated by a 37–μm nylon mesh and then inoculated with an arbuscular mycorrhizal fungus (AMF), Diversispora spurca. Inoculation with D. spurca resulted in formation of a CMN between trifoliate orange and white clover, whilst the best AM colonization occurred in the donor trifoliate orange–receptor white clover association. In the trifoliate orange–white clover association, the mycorrhizal colonization of receptor plant by extraradical hyphae originated from the donor plant significantly increased shoot and root fresh weight and chlorophyll concentration of the receptor plant. Enzymatic activity of soil β-glucoside hydrolase, protease, acid and neutral phosphatase, water-stable aggregate percentage at 2–4 and 0.5–1 mm size, and mean weight diameter in the rhizosphere of the receptor plant also increased. The hyphae of CMN released more easily-extractable glomalin-related soil protein and total glomalin-related soil protein into the receptor rhizosphere, which represented a significantly positive correlation with aggregate stability. AMF inoculation exhibited diverse changes in leaf and root sucrose concentration in the donor plant, and AM colonization by CMN conferred a significant increase of root glucose in the receptor plant. These results suggested that CMN formed in the trifoliate orange–white clover association, and root AM colonization by CMN promoted plant growth, root glucose accumulation, and rhizospheric soil properties in the receptor plant.  相似文献   

16.
Effects of arbuscular mycorrhizal fungus (AMF)Glomus mosseae on plant growth, soil microbial populations and enzymes activities of soils were studied in red clover (Trifolium pratense L.) grown in pots at different cultivated densities. Seeds of red clover were sown with 50 g inoculums ofG. mosseae per pot. After a week, the plants were thinned to 20, 30, 40, 50 and 60 seedlings per pot. Three months after treatment, AMF inoculation significantly stimulated plant growth. Quantities of vesicles and spores, arbuscules and hyphae were the highest when 30 and 50 seedlings were grown per pot, respectively. However, no root was infected in control plants. In all the soil sites, the numbers of fungi and bacteria were followed in the order: root > root surface > rhizospheric. It was indicated that arbuscular mycorrhizal fungus decreased the numbers of fungi and bacteria but improved growth of actinomycetes. Compared to control plants, AMF stimulated activities of phosphatase and urease but decreased invertase.  相似文献   

17.
丛枝菌根真菌群落对白三叶草生长的影响   总被引:11,自引:0,他引:11  
不同施肥处理影响AMF(Arbuscular mycorrhizal fungi)群体结构,然而不同AMF群体结构对植物的生长以及养分吸收的影响尚未见报道,试验利用盆栽实验研究了7种不同来源的丛枝菌根真菌(AMF)群落对白三叶草生长和N、P、K以及微量元素Cu、Zn、Mn的吸收的影响。7种AMF群落分离自长期定位施肥试验地,分别为NPK、OM、CK、1/2OM、NP、NK和PK。每年施肥量是300kg N/hm2,135kg P2O5/hm2,300kg K2O/hm2。有机肥处理的N、P、K养分量与试验地NPK处理含量相同,原料以粉碎的麦秆为主,加上适量的大豆饼和棉仁饼,有机肥经堆制发酵后施用。试验土壤采用封丘试验地土壤,经灭菌处理。试验结果表明,接种不同AMF群落均能促进三叶草的生长,对养分吸收则表现不同。分离自CK试验地的AMF群落对三叶草侵染率显著低于其它6种AMF群落。分离自1/2OM和OM试验地的AMF群落较分离自NPK、CK、NP和NK的AMF群落显著促进了三叶草对P的吸收;各种AMF群落都促进了对N和K的吸收;分离自OM、CK、1/2OM、NP、NK试验地的降低了三叶草植株N含量;分离自NPK试验地的AMF群落提高了三叶草植物K含量;对于Cu、Zn、Mn元素的吸收,不同处理存在较大的差异。AMF群落对三叶草生长以及养分吸收贡献不同,这与不同施肥管理下不同AMF群落的优势种属的侵染率、养分转化以及菌丝发育及分布有关。  相似文献   

18.
通过观测田间国庆1号温州密柑/枳和国庆4号温州密柑/枳根系菌根侵染率、孢子密度、根际有效磷和磷酸酶活性的年变化,探讨丛枝菌根真菌生长与根际有效磷和磷酸酶活性的相关性.结果表明,2种柑橘菌根侵染率和孢子密度的年变化均呈 “Λ”形,2月和12月较低,4月和10月居中,6月和8月较高;有效磷和中性磷酸酶年变化呈“V”形.2种柑橘的菌根侵染率都与孢子密度呈极显著正相关,与有效磷呈极显著负相关,说明较高的孢子密度和较低的有效磷对菌根侵染率有促进作用;2种柑橘的孢子密度均与有效磷呈极显著负相关,与中性磷酸酶和总磷酸酶呈极显著正相关,表明中性磷酸酶和总磷酸酶对孢子密度有刺激作用,而有效磷对其有抑制作用.柑橘树下有机磷矿化主要以中性磷酸酶为主.  相似文献   

19.
在液体培养基中设置无磷、低磷、中磷和高磷四种磷浓度,离体培养松乳菇Lactarius deliciosus的3个株系Ld-01、Ld-02、Ld-03和双色蜡蘑Laccaria bicolor S238N,分别测定外生菌根真菌的生长量、草酸、氢离子和酸性磷酸酶分泌速率。结果表明,在中磷的条件下,外生菌根真菌的生长最好,无磷、低磷或高磷对它们的生长产生抑制作用,抑制程度因菌种(株)不同而异。草酸、氢离子和酸性磷酸酶的分泌速率顺序为:无磷(0gNaH2PO4/L)>低磷(0.229gNaH2PO4/L)>中磷(1.147gNaH2PO4/L)>高磷(5.735gNaH2PO4/L),表现出明显的种(株)间差异,看来外源磷的供应状况可能有调节外生菌根真菌活化土壤无机磷和有机磷的作用。在缺磷和低磷条件下,外生菌根真菌具有较强的活化作用,在足磷的条件下活化作用减小,由此有效地利用土壤中的磷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号