首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incorporation of the saxitoxin receptor of the sodium channel solubilized with Triton X-100 and purified 250-fold from rat brain into phosphatidylcholine vesicles is described. Fifty to 80% of the saxitoxin receptor sites are recovered in the reconstituted vesicles (KD = 3 nM). Unlike the detergent-solubilized saxitoxin receptor, the reconstituted saxitoxin binding activity is stable to incubation at 36 degrees C. Approximately 75% of the reconstituted saxitoxin receptor sites are externally oriented and 25% are inside-out. The initial rate of 22Na+ uptake into reconstituted vesicles is increased up to 3- to 4-fold by veratridine with a K0.5 of 11 microM. Seventy per cent of this increase is blocked by external tetrodotoxin (TTX) with a Ki of 10 nM. All of the veratridine-stimulated 22Na+ uptake is blocked when TTX is present on both sides of the vesicle membrane, or when tetracaine is added to the external medium. The apparent binding constants for veratridine, saxitoxin, and TTX are essentially identical to those in intact rat brain synaptosomes. The results demonstrate reconstitution of sodium transport, as well as neurotoxin binding and action, from substantially purified sodium channel preparations.  相似文献   

2.
Electrophysiological studies with neuroblastoma cells have shown that toxin gamma from the venom of the scorpion Tityus serrulatus is a new toxin specific for the gating system of the Na+ channel. The procedure which solubilizes the tetrodotoxin receptor from rat brain also solubilizes the Tityus gamma toxin receptor. Binding experiments on the solubilized receptor with a radioiodinated derivative of Tityus gamma toxin have shown: (i) that the TiTx gamma-receptor complex is very stable with a dissociation constant of 8.6 X 10(-12) M and a very slow dissociation (T 1/2 = 15 h); (ii) that the toxin recognizes a class of sites with a 1:1 stoichiometry with those for tetrodotoxin (Bmax = 1.3 pmol/mg protein). The radioiodinated Tityus gamma-receptor complex has been substantially purified by ion-exchange chromatography, lectin affinity chromatography and sucrose gradient sedimentation. A ratio of one Tityus gamma toxin binding site per tetrodotoxin binding site was found throughout the purification. The purified material exhibited a sedimentation coefficient of 10.4S and had an apparent mol. wt. of 270 000 on SDS-gel electrophoresis. No other polypeptide chains were demonstrated to be associated with this large protein in the Tityus gamma receptor. The main conclusion is that the tetrodotoxin binding site associated with the selectivity filter of the Na+ channel and the Tityus gamma toxin binding site associated with the gating component are probably carried by the same polypeptide chain.  相似文献   

3.
Extracts prepared from heads of Drosophila melanogaster show high-affinity binding (KD = 1.9 nM) of [3H]saxitonin, a compound known to bind to and block voltage-sensitive sodium channels in other organisms. The interaction between saxitoxin and the Drosophila saxitoxin receptor is non-cooperative and reversible with a half-life of 18.3 s for binding at 4 degrees C. The saturable binding is specifically inhibited by tetrodotoxin with a K1 = 0.30 nM. The number of saturable binding sites in the extract is 97 fmol/mg protein. Since approx. 50% of the binding activity is recovered in the extract, the number of binding sites in the head is estimated to be 6.4 fmol/mg head. Nerve conduction in Drosophila larvae is completely blocked after 20 min in a bathing solution containing 200 nM tetrodotoxin. A comparison between the binding and the electrophysiological studies in Drosophila and other organisms suggests that the Drosophila saxitoxin receptor is part of the voltage-sensitive sodium channel involved in the propagation of action potentials. A mutant (ttxs), which is abnormally sensitive to dietary tetrodotoxin, is shown to be indistinguishable from wild type with respect to [3H]saxitonin-binding properties and physiological sensitivity to tetrodotoxin. These studies provide techniques which can be used to identify mutants with defects in the saxitoxin-binding component of the sodium channel.  相似文献   

4.
Abstract: Voltage-gated sodium channels serve as a target for many neurotoxins that bind to several distinct, allosterically interacting receptor sites. We examined the effect of membrane potentials (incited by increasing external K+ concentrations) on the binding modulation by veratridine, brevetoxin, and tetrodotoxin of the scorpion α-toxin AaH II to receptor site 3 on sodium channels of rat brain synaptosomes. Depolarization is shown to differentially modulate neurotoxin effects on AaH II binding: Veratridine increase is potentiated, brevetoxin's inhibitory effect is reduced, and tetrodotoxin enhancement is evident mainly at resting membrane potential (5 m M K+). Both tetrodotoxin and veratridine apparently reverse the inhibition of AaH II binding by brevetoxin at resting membrane potential, but only veratridine is able to partially restore AaH II binding at 0 mV (135 m M K+). Thus, the allosteric interactions are grouped into two categories, depending on the membrane potential. Under depolarized conditions, the cooperative effects among veratridine and brevetoxin on AaH II binding fit the previously described two-state conformational model. At resting membrane potential, additional interactions are revealed, which may be explained by assuming that toxin binding induces conformational changes on the channel structure, in addition to being state-dependent. Our results provide a new insight into neurotoxin action and the complex dynamic changes underlying allosteric coupling of neurotoxin receptor sites, which may be related to channel gating.  相似文献   

5.
The purification of axonal membranes of crustaceans was followed by measuring enrichment in [3H]tetrodotoxin binding capacity and in Na+, K+-ATPase activity. A characteristic of these membranes is their high content of lipids and their low content of protein as compared to other types of plasmatic membranes. The axonal membrane contains myosin-like, actin-like, tropomyosin-like, and tubulin-like proteins. It also contains Na+, K+-ATPase and acetylcholinesterase. The molecular weights of these two enzymes after solubilization are 280,000 and 270,000, respectively. The molecular weights of the catalytic subunits are 96,000 for ATPase and 71,000 for acetylcholinesterase. We confirmed the presence of a nicotine binding component in the axonal membrane of the lobster but we have been unable to find [3H]nicotine binding to crab axonal membranes. The binding to axonal membranes og of the sodium channel, has been studied in detail. The dissociation constant for the binding of [3H]tetrodotoxin to the axonal membrane receptor is 2.9 nM at pH 7.4. The concentration of the tetrodotoxin receptor in crustacean membranes is about 10 pmol/mg of membrane protein, 7 times less than the acetylcholinesterase, 30 times less than the Na+, K+-ATPase, and 30 times less than the nicotine binding component in the lobster membrane. A reasonable estimate indicates that approximately only one peptide chain in 1000 constitutes the tetrodotoxin binding part of the sodium channel in the axonal membrane. Veratridine, which acts selectively on the resting sodium permeability, binds to the phospholipid part of the axonal membrane. [3H]Veratridine binding to membranes parallels the electrophysiological effect. Veratridine and tetrodotoxin have different receptor sites. Although tetrodotoxin can repolarize the excitable membrane of a giant axon depolarized by veratridine, veratridine does not affect the binding of [3H]tetrodotoxin to purified axonal membranes. Similarly, tetrodotoxin does not affect the binding of [3H]veratridine to axonal membranes. Scorpion neurotoxin I, a presynaptic toxin which affects both the Na+ and the K+ channels, does not interfere with the binding of [3H]tetrodotoxin or [3H]veratridine to axonal membranes. Tetrodotoxin, veratridine, and scorpion neurotoxin I, which have in common the perturbation of the normal functioning of the sodium channel, act upon three different types of receptor sites.  相似文献   

6.
α-Bungarotoxin Binds to Low-Affinity Nicotine Binding Sites in Rat Brain   总被引:5,自引:4,他引:1  
Reported differences in the pharmacology and distribution of [3H]nicotine and [125I]alpha-bungarotoxin binding sites in mammalian brain suggest that these ligands label separate receptor sites. Affinity purification of an alpha-bungarotoxin binding protein from rat brain failed to copurify the high-affinity nicotine binding site, which remained in the nonbound soluble fraction after the affinity chromatography step. This confirms the independence of these putative receptor sites. Nevertheless, the binding of [125I]alpha-bungarotoxin to P2 membranes was inhibited by (-)-nicotine (Ki = 9 X 10(-6) M), and this sensitivity was preserved after affinity purification. It is proposed that alpha-bungarotoxin binds to a population of low-affinity nicotine binding sites. Comparison of the enantiomers of nicotine in competition studies at both radioligand binding sites revealed an 80-fold preference for the (-) form at the high-affinity [3H]nicotine binding site, whereas the site labelled by [125I]alpha-bungarotoxin displayed little stereoselectivity. In this respect, the brain alpha-bungarotoxin binding site resembles the nicotinic acetylcholine receptor from Torpedo electric organ.  相似文献   

7.
A high affinity [3H]ryanodine receptor has been solubilized from rabbit brain membranes and biochemically characterized. [3H]Ryanodine binding to rabbit brain membranes is specific and saturable, with a Kd of 1.3 nM. [3H]Ryanodine binding is enriched in membranes from the hippocampus but is significantly lower in membranes from the brain stem and spinal cord. Approximately 60% of [3H]ryanodine-labeled receptor is solubilized from brain membranes using 2.5% CHAPS and 10 mg/ml phosphatidylcholine containing 1 M NaCl. The solubilized brain [3H]ryanodine receptor sediments through sucrose gradients like the skeletal receptor as a large (approximately 30 S) complex. Solubilized receptor is specifically immunoprecipitated by sheep polyclonal antibodies against purified skeletal muscle ryanodine receptor coupled to protein A-Sepharose. [3H]Ryanodine-labeled receptor binds to heparin-agarose, and a protein of approximately 400,000 Da, which is cross-reactive with two polyclonal antibodies raised against the skeletal muscle ryanodine receptor, elutes from the column and is enriched in peak [3H]ryanodine binding fractions. These results suggest that the approximately 400,000-Da protein is the brain form of the high affinity ryanodine receptor and that it shares several properties with the skeletal ryanodine receptor including a large oligomeric structure composed of approximately 400,000-Da subunits.  相似文献   

8.
The Leiurus quinquestriatus quinquestriatus receptor site of the voltage-dependent sodium channel has been characterized using several fluorescent scorpion toxins. The derivatives show fluorescence enhancements upon binding to the receptor site on the channel together with blue shifts. The fluorescence properties of the bound probes indicate a conformationally flexible, hydrophobic site. Binding of tetrodotoxin has no effect on the fluorescence spectra of the bound derivatives, whereas binding of the allosteric activator batrachotoxin enhances the fluorescence about 2-fold and causes a red shift in the emission spectra, suggesting a batrachotoxin-induced conformational change in the scorpion toxin receptor. The distance between the tetrodotoxin receptor and the Leiurus scorpion toxin receptor on the channel was measured by fluorescence resonance energy transfer. Five different chromophoric scorpion toxin derivatives were used as energy transfer acceptors or donors with anthraniloyltetrodotoxin or N-methylanthraniloylglycine-tetrodotoxin as the energy donor or acceptor. Because of the presence of three tetrodotoxin receptors for each Leiurus receptor, the positions of the donors and acceptors were exchanged. Efficiencies of transfer were measured by both donor quenching and sensitized emission. The average distance of separation between these sites is 35 A. Upon batrachotoxin addition, this distance changes to 42 A indicating a conformational change in one subunit of the channel or a change in the interaction between two subunits coupled to the batrachotoxin-binding site. On the basis of these studies, we present a model suggesting that tetrodotoxin binds to a subunit/site which is extracellularly placed and is 35 A from the Leiurus subunit/site which is located in a protein cleft of the channel which extends partly into the membrane, and undergoes a neurotoxin and voltage-dependent conformational change.  相似文献   

9.
K J Angelides 《Biochemistry》1981,20(14):4107-4118
Fluorescent and photoactivatable fluorescent derivatives of tetrodotoxin (TTX) have been synthesized. N-Methylanthraniloylglycine hydrazide, anthraniloyl hydrazide, and 2-azidoanthraniloylglycine hydrazide were coupled to the carbonyl at C6 of oxidized tetrodotoxin to form stable fluorescent hydrazones. The C6 ketone can be reductively aminated with either ammonium or methylammonium acetate to form 6-amino- or 6-(methylamino)tetrodotoxin, which can then be acylated by a variety of fluorescent reagents. The biological activity, competitive binding with [3H]tetrodotoxin for the receptor on rat axonal membranes, and equilibrium binding isotherms obtained by fluorescence enhancement or anisotropy indicate that the derivatives are only about 2-5 times less active then tetrodotoxin itself. The 2-azidoanthraniloylglycine hydrazone of oxidized tetrodotoxin, when activated by light, generates a reactive nitrene which is capable of covalent insertion into the toxin receptor. The product of the photolysis is a highly fluorescent tetrodotoxin derivative which is irreversibly linked to the receptor site. The excitation and emission spectra of the fluorescent tetrodotoxin derivatives vary with solvent polarity, and this sensitivity has been used to determine the immediate environmental characteristics of the toxin binding site of the sodium channel. It is concluded that the toxin binding site is highly polar. Emission and excitation spectra reveal that radiationless energy is transferred from tryptophan residues of the receptor to the anthraniloyl group of the TTX derivatives.  相似文献   

10.
The work reported here constitutes a first step in characterizing the receptor for mouse gamma interferon at the biochemical level. The myelomonocytic cell line, WEHI-3, was the source of starting material. Iodinated recombinant mouse gamma interferon incubated with WEHI-3 cells, as well as membranes prepared from them, bound specifically to a single class of sites with a Kd of 7 x 10(-9)M. Membranes were solubilized with the non-ionic detergent octyl-beta-D-glucopyranoside. As solubilization proceeded, binding activity could be assayed by precipitating the receptor with acetone in the presence of egg phosphatidylcholine liposomes. The Kd of the receptor in association with liposomes was 13 nM. Again here, only a single class of binding activity was found, and specificity for gamma, compared to other interferons, was maintained. This is the first time that the receptor for mouse gamma interferon has been solubilized and recovered in functional form. Further characterization included at least a 200-fold enrichment of binding activity by ligand affinity chromatography, resulting in the identification of a 95 kDa protein as the most likely candidate for either the receptor or a binding subunit thereof.  相似文献   

11.
High and low affinity binding sites for tetrodotoxin have been found in rat skeletal muscle cells in vitro using a radiolabeled tetrodotoxin derivative and 22Na+ flux studies. High affinity binding sites for tetrodotoxin (KD(tetrodotoxin) = 1.6 nM) cannot be detected at the myoblast stage. They appear and increase in density as myoblasts fuse into myotubes to reach a maximum binding capacity of 50 fmol/mg of proteins. Na+ channel structures with a high affinity for tetrodotoxin cannot be activated by neurotoxins specific for the Na+ channel such as veratridine and sea anemone toxinII. They are not expressed in the action potential. Na+ channels with a low affinity for tetrodotoxin (IC50(tetrodotoxin) = 1 microM) are functional since they can be activated by veratridine and sea anemone toxinII. They are already expressed in myoblasts and their density is not modified during the fusion of myoblasts into myotubes; they remain functional throughout the differentiation process. It is suggested that neuronal factors are not required for the synthesis of structures with high affinity binding sites for tetrodotoxin in the rat muscle and that they are only involved for the maturation of these structures from a nonfunctional to a functional form.  相似文献   

12.
Saturable, high-affinity binding of iodinated toxin gamma from Tityus serrulatus scorpion venom (TiTx gamma) to Na+ channel receptor was identified in sarcolemma membrane of chick heart. A binding capacity of 450-600 fmol/mg of protein was found similar to that of tetrodotoxin-binding component. The enrichment of these membrane-bound toxin binding sites follows that of other sarcolemma markers. Kinetic data and displacement of 125I-TiTx gamma from its binding sites by unlabeled TiTx gamma gave an equilibrium dissociation constant (Kd) of 1-3 pM. The gating component and the selectivity filter of the voltage-sensitive Na+ channel, identified as binding sites of TiTx gamma and of tetrodotoxin respectively, have been efficiently solubilized with Nonidet P-40. Purification was achieved by ion-exchange chromatography on DEAE-Sephadex A-25, affinity chromatography on wheat-germ-agglutinin-Sepharose and sucrose density gradient centrifugation. An enrichment of 1400-fold from the original detergent extract was measured for both toxin binding sites (1120-1230 pmol/mg of protein). Sodium dodecyl sulfate gel electrophoresis reveals a single large polypeptide component of Mr230000-270000. The purified material exhibits an apparent sedimentation coefficient of 8.8S. Covalent cross-linking of 125I-TiTx gamma to its membrane-embedded cardiac receptor shows that the cross-linked material, solubilized and purified by the same procedure comprises a single polypeptide chain of the same Mr of 230000-270000. Furthermore, as seen for Electrophorus electricus electroplax and rat brain, the tetrodotoxin-binding component and the TiTx gamma-binding component are carried by the same polypeptide chain. The functional Na+ channel might be an oligomer of this subunit of Mr23000-270000.  相似文献   

13.
The high-affinity binding site for [3H] diazepam has been solubilized from rat brain using 0.5% Lubrol-PX. Using a polyethylene glycol (PEG)-γ-globulin assay, it has been possible to demonstrate solubilization of about 60% of the binding sites in a single step. The solubilized binding site possesses a KD of 11 nM for [3H] diazepam compared to approximately 4 nM for the membrane-bound form, and binding is to a single class of sites. The order of potency of benzodiazepines is identical for the solubilized receptor and the membrane-bound form. Binding of [3H] diazepam is temperature dependent and higher at 4° than 37°C. Both urea and guanidine-HC1 were capable of totally inhibiting binding, and this inhibition was partly reversible; neither sulfhydryl groups nor carbohydrate moieties seem to be important for binding. γ-Aminobutyric acid which enhanced [3H] diazepam binding to membrane fractions was without effect on the solubilized binding site.  相似文献   

14.
Summary High affinity stereospecific binding sites for L-glutamate have been reported in several regions of mammalian brain. The binding sites in the hippocampus and cerebellum have been studied more extensively than binding in other brain regions. The hippocampal and cerebellar binding sites show similar properties with respect to their pharmacology and their independence of Na+. There is evidence, particularly good in the case of hippocampus, of mechanisms that may regulate the availability of the binding sites in both brain areas. Some progress has been made with the isolation of the hippocampal binding site but the protein has not been extensively characterised.In the case of insect muscle, high-affinity stereospecific binding of L-glutamate to whole membrane preparations, to detergent-solubilised membranes and to isolated proteolipids has been reported. Much greater variability in the binding characteristics is seen than is the case with the mammalian brain preparations. Preliminary experiments suggest that at least four distinct binding sites may be present on insect muscle.The complete characterisation of glutamate binding sites is at present precluded by a lack of potent agonists and antagonists. However, recent advances in the pharmacological classification of receptor sites for the excitatory amino acids in mammalian brain could provide sufficient information to permit the identification of the binding sites as synaptic receptors. Invertebrate toxins whose site of action is the insect neuromuscular junction may well prove to be useful tools with which to isolate and characterise the synaptic receptor proteins.  相似文献   

15.
Lipid binding to the potassium channel KcsA from Streptomyces lividans has been studied using quenching of the fluorescence of Trp residues by brominated phospholipids. It is shown that binding of phospholipids to nonannular lipid binding sites on KcsA, located one each at the four protein-protein interfaces in the tetrameric structure, is specific for anionic phospholipids, zwitterionic phosphatidylcholine being unable to bind at the sites. The binding constant for phosphatidylglycerol of 3.0 ± 0.7 mol fraction−1 means that in a membrane containing ~20 mol% phosphatidylglycerol, as in the Escherichia coli inner membrane, the nonannular sites will be ~37% occupied by phosphatidylglycerol. The binding constant for phosphatidic acid is similar to that for phosphatidylglycerol but binding constants for phosphatidylserine and cardiolipin are about double those for phosphatidylglycerol. Binding to annular sites around the circumference of the KcsA tetramer are different on the extracellular and intracellular faces of the membrane. On the extracellular face of the membrane the binding constants for anionic lipids are similar to those for phosphatidylcholine, the lack of specificity being consistent with the lack of any marked clusters of charged residues on KcsA close to the membrane on the extracellular side. In contrast, binding to annular sites on the intracellular side of the membrane shows a distinct structural specificity, with binding of phosphatidic acid and phosphatidylglycerol being stronger than binding of phosphatidylcholine, whereas binding constants for phosphatidylserine and cardiolipin are similar to that for phosphatidylcholine. It is suggested that this pattern of binding follows from the pattern of charge distribution on KcsA on the intracellular side of the membrane.  相似文献   

16.
Extracts prepared from heads of Drosophila melanogaster show high-affinity binding (KD = 1.9 nM) of [3H]saxitoxin, a compound known to bind to and block voltage-sensitive sodium channels in other organisms. The interaction between saxitoxin and the Drosophila saxitoxin receptor is non-cooperative and reversible with a half-life of 18.3 s for binding at 4°C. The saturable binding is specifically inhibited by tetrodotoxin with a KI = 0.30 nM. The number of saturable binding sites in the extract is 97 fmol/mg protein. Since approx. 50% of the binding activity is recovered in the extract, the number of binding sites in the head is estimated to be 6.4 fmol/mg head. Nerve conduction in Drosophila larvae is completely blocked after 20 min in a bathing solution containing 200 nM tetrodotoxin. A comparison between the binding and the electrophysiological studies in Drosophila and other organisms suggests that the Drosophila saxitoxin receptor is part of the voltage-sensitive sodium channel involved in the propagation of action potentials. A mutant (ttxs), which is abnormally sensitive to dietary tetrodotoxin, is shown to be indistinguishable from wild type with respect to [3H]saxitoxin-binding properties and physiological sensitivity to tetrodotoxin. These studies provide techniques which can be used to identify mutants with defects in the saxitoxin-binding component of the sodium channel.  相似文献   

17.
The role of lipids in maintaining ligand binding properties of affinity-purified bovine striatal dopamine D2 receptor was investigated in detail. The receptor, purified on a haloperidol-linked Sepharose CL6B affinity column, exhibited low [3H]spiroperidol binding unless reconstituted with soybean phospholipids. In order to understand the role of individual phospholipids in maintaining the receptor binding activity, the purified preparation was reconstituted separately with individual phospholipids and assayed for [3H]spiroperidol binding. Except for phosphatidylcholine and phosphatidylethanolamine, that respectively restored 30 and 20% binding as compared to that obtained with soybean lipids, reconstitution with other lipids had very little effect. When various combinations of phospholipids were used for reconstitution, a phosphatidylcholine and phosphatidylserine mixture seemed to almost fully restore the receptor binding. A mixture of phosphatidylcholine and phosphatidylethanolamine was as effective as phosphatidylcholine alone in reconstituting ligand binding; however, when phosphatidylserine was also included in the mixture, there was a pronounced increase in binding (about 2-fold compared to the soybean lipids and about 6-fold compared to the phosphatidylcholine-phosphatidylethanolamine mixture). Substitution of other phospholipids or cholesterol for phosphatidylserine in phosphatidylcholine and phosphatidylethanolamine mixture had little effect. Maximal reconstitution of [3H]spiroperidol binding was obtained with phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine mixture (2:2:1, w/w) at a concentration of 0.5 mg/ml. The reconstituted receptor exhibited high affinity binding for [3H]spiroperidol which was comparable to that obtained with membrane or solubilized preparations. Various dopaminergic antagonists and agonists showed appropriate order of potency for the reconstituted receptor. The presently described reconstitution data suggest a role of specific phospholipids in preserving the binding properties of dopamine D2 receptor and should prove useful in studies on functional reconstitution of the receptor.  相似文献   

18.
A 7- dimethylaminocoumarin -4-acetate fluorescent derivative of toxin II from the venom of the scorpion Centruroides suffusus suffusus (Css II) has been prepared to study the structural, conformational, and cellular properties of the beta-neurotoxin receptor site on the voltage-dependent sodium channel. The derivative retains high affinity for its receptor site on the synaptosomal sodium channel with a KD of 7 nM and site capacity of 1.5 pmol/mg of synaptosomal protein. The fluorescent toxin is very environmentally sensitive and the fluorescence emission upon binding indicates that the Css II receptor is largely hydrophobic. Binding of tetrodotoxin or batrachotoxin does not alter the spectroscopic properties of bound Css II, whereas toxin V from Leiurus quinquestriatus effects a 10-nm blue shift to a more hydrophobic environment. This is the first direct indication of conformational coupling between these separate neurotoxin receptor sites. The distance between the tetrodotoxin and Css II scorpion toxin receptors on the sodium channel was measured by fluorescence resonance energy transfer. Efficiencies were measured by both donor quenching and acceptor-sensitized emission. The distance between these two neurotoxin sites is about 34 A. The implications of these receptor locations together with other known molecular distances are discussed in terms of a molecular structure of the voltage-dependent sodium channel.  相似文献   

19.
Abstract : Studies on iron uptake into the brain have traditionally focused on transport by transferrin. However, transferrin receptors are not found in all brain regions and are especially low in white matter tracts where high iron concentrations have been reported. Several lines of research suggest that a receptor for ferritin, the intracellular storage protein for iron, may exist. We present, herein, evidence for ferritin binding sites in the brains of adult mice. Autoradiographic studies using 125I-recombinant human ferritin demonstrate that ferritin binding sites in brain are predominantly in white matter. Saturation binding analyses revealed a single class of binding sites with a dissociation constant ( K D) of 4.65 × 10-9 M and a binding site density ( B max) of 17.9 fmol bound/μg of protein. Binding of radiolabeled ferritin can be competitively displaced by an excess of ferritin but not transferrin. Ferritin has previously been shown to affect cellular proliferation, protect cells from oxidative damage, and deliver iron. The significance of a cellular ferritin receptor is that ferritin is capable of delivering 2,000 times more iron per mole of protein than transferrin. The distribution of ferritin binding sites in brain vis-à-vis transferrin receptor distribution suggests distinct methods for iron delivery between gray and whi  相似文献   

20.
A synthetic method has been established for preparing [18F]1-amino-3-fluoromethyl-5-methyl-adamantane ([18F]AFA). Biodistribution of the radiotracer in mice showed high brain uptake. The peak uptake (3.7% I.D/g organ) for the brain occurred at 30 min after injection. Accumulation of radioactivity in mouse brain was consistent with the known distribution of the NMDA receptors. The binding of [18F]AFA to the phencyclidine (PCP) binding sites of the NMDA receptor complex and the sigma recognition sites in a Rhesus monkey was also examined using positron emission tomography (PET). The regional brain distribution of [18F]AFA was changed by memantine and by (+)-MK-801, indicating competition for the same binding sites. Treatment with haloperidol caused a marked reduction of radioactivity uptake in all the brain regions examined. (-)-Butaclamol, which has pharmacological specificity for sigma sites, did not have any significant effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号