首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Specific high-affinity binding sites for 125I-alpha-bungarotoxin and (-)-[3H]nicotine have been measured in rat brain and locust (Schistocerca gregaria) ganglia. The binding sites for 125I-alpha-bungarotoxin had similar Kd values of 1.5 x 10(-9) and 0.8 x 10(-9) M for rat and locust preparations, respectively; the corresponding values for the (-)-[3H]nicotine-binding site were 9.3 x 10(-9) and 1.7 x 10(-7) M. Methyllycaconitine (MLA) potently inhibited 125I-alpha-bungarotoxin binding in both rat and locust. MLA was a less effective inhibitor of (-)-[3H]nicotine binding whereas (+)-anatoxin-a was a very potent inhibitor at this site in the rat but not in the locust. These data suggest that (+)-anatoxin-a is a useful probe for the high-affinity nicotine-binding receptor in vertebrate brain, whereas MLA is a preferential probe for the subclass of receptor that binds alpha-bungarotoxin.  相似文献   

2.
The binding of (-)-[3H]nicotine to membrane fragments and a detergent solubilized fraction of goldfish brain was characterized. (-)-[3H]nicotine binding was not displaced by alpha-bungarotoxin, but was displaced by (-)nicotine and carbamoylcholine with Ki of approximately 8.6 and 86 nM, respectively. Preincubation of solubilized membrane extract with alpha-bungarotoxin-coupled Sepharose resulted in the loss of approximately 50% of the (-)-[3H]nicotine binding protein from the eluent and an increase in (-)-[3H]nicotine binding to the gel compared to control, non-alpha-bungarotoxin Sepharose. 125I-alpha-bungarotoxin binding protein in the eluent from the same preincubation experiments was totally removed. In addition, incubation of the solubilized tissue extracts with alpha-bungarotoxin-coupled Sepharose resulted in an increase in the affinity for (-)-[3H]nicotine in the eluent (mean KD = 3.1) compared to control solubilized tissue extracts (KD = 6.4 nM). Specific (-)-[3H]nicotine binding sites could be eluted from the alpha-bungarotoxin-coupled Sepharose with carbamoylcholine and D-tubocurarine. Similar to previously reported 125I-alpha-bungarotoxin binding data, eye removal resulted in an approximately 40% decrease in (-)-[3H]nicotine binding in the contralateral tectum compared to that in the ipsilateral tectum. These data indicate that at least two distinct subtypes of (-)nicotine binding sites may be present in goldfish brain, one which binds alpha-bungarotoxin and (-)nicotine and another which binds only (-)nicotine.  相似文献   

3.
Postnatal Development of Cholinergic Enzymes and Receptors in Mouse Brain   总被引:12,自引:0,他引:12  
The developmental profiles for the cholinergic enzymes acetylcholinesterase and choline acetyltransferase, and the muscarinic and nicotinic receptors were determined in whole mouse brain. The enzyme activities (per milligram of protein) increased steadily from birth, reaching adult levels at 20 days of age. These increases were primarily due to increases in Vmax. Muscarinic receptor numbers, measured by [3H]quinuclidinyl benzilate binding, also increased from birth to 25 days of age. Brain nicotinic receptors were measured with the ligands L-[3H]nicotine and alpha-[125I]-bungarotoxin. Neonatal mouse brain had approximately twice the number of alpha-bungarotoxin binding sites found in adult mouse brain. Binding site numbers rose slightly until 10 days of age, after which they decreased to adult values, which were reached at 25 days of age. The nicotine binding site was found in neonatal brain at concentrations comparable to those at the alpha-bungarotoxin site followed by a steady decline in nicotine binding until adult values were reached. Thus, brain nicotinic and muscarinic systems develop in totally different fashions; the quantity of muscarinic receptors increases with age, while the quantity of nicotinic receptors decreases. It is conceivable that nicotinic receptors play an important role in directing the development of the cholinergic system.  相似文献   

4.
Presynaptic nicotinic acetylcholine receptors on striatal nerve terminals modulate the release of dopamine. We have compared the effects of a number of nicotinic agonists and antagonists on a perfused synaptosome preparation preloaded with [3H]dopamine. (-)-Nicotine, acetylcholine, and the nicotinic agonists cytisine and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), at micromolar concentrations, stimulated the release of [3H]dopamine from striatal nerve terminals. Carbamylcholine was a much weaker agonist. The actions of (-)-nicotine, cytisine, and DMPP were inhibited by low concentrations of the nicotinic antagonists dihydro-beta-erythroidine, mecamylamine, pempidine, and neosurugatoxin; alpha-bungarotoxin was without effect, and extending the time of exposure to this toxin resulted in only very modest inhibition. This pharmacology points to a specific nicotinic receptor mechanism that is clearly distinct from that at the neuromuscular junction. Atropine failed to antagonise the effects of acetylcholine and carbamylcholine, suggesting that no muscarinic component is involved. The nicotinic receptor ligands (-)-[3H]nicotine and 125I-alpha-bungarotoxin bound to specific sites enriched in the synaptosome preparation. Drugs tested on the perfused synaptosomes were examined for their ability to interact with these two ligand binding sites in brain membranes. The differential sensitivity to the neurotoxins alpha-bungarotoxin and neosurugatoxin of the 125I-alpha-bungarotoxin and (-)-[3H]nicotine binding sites, respectively, leads to a tentative correlation of the (-)-[3H]nicotine site with the presynaptic nicotinic receptor on striatal nerve terminals.  相似文献   

5.
The effects of different variables such as incubation time, temperature, tissue protein content, and pH on the interactions of various labelled nicotinic ligands with nicotine-like binding sites in vitro were studied in rodent brain preparations. The ligands tested were alpha-[3H]bungarotoxin (alpha-[3H]BTX), [3H]tubocurarine ([3H]TC), and [3H]nicotine ([3H]NIC). The regional distribution of the labelled nicotinic ligand binding was also studied and affinity constants and maximal binding (Bmax) values for the equilibrium [3H]NIC binding are given. Association kinetics for [3H]NIC and [3H]TC binding to brain homogenate were similar, with maximal binding within 5-10 min of incubation, followed by a continuous decrease. In contrast, the binding of alpha-[3H]BTX to brain homogenate was much slower, reaching equilibrium after 30-60 min of incubation. Scatchard analysis of equilibrium binding data for [3H]NIC in the hippocampus indicated two binding sites: a high-affinity site (Bmax, 60 pmol/g protein; KD, 6 nM) and a low-affinity site (Bmax, 230 pmol/g protein; KD, 125 nM). The data for the high-affinity [3H]NIC binding site are very similar to previously found data for the high-affinity binding site of [3H]TC and the binding site of alpha-[3H]BTX. Each ligand showed regional differences in binding, and the binding pattern also differed between the ligands.  相似文献   

6.
Regulation of Brain Nicotinic Receptors by Chronic Agonist Infusion   总被引:8,自引:2,他引:6  
Several studies have demonstrated that chronic treatment with nicotine elicits an increase in the number of brain nicotinic receptors. To determine whether this effect is elicited by other nicotinic agonists found in tobacco, the effects of chronic infusion with nicotine on brain nicotinic receptors were compared with those after anabasine and lobeline. C57BL/6 mice were infused with saline or equimolar doses (18.5 mumol/kg/h) of nicotine, anabasine, or lobeline for 8 days. Nicotinic receptors, quantified by the binding of [3H]nicotine and [125I]iodo-alpha-bungarotoxin (alpha-[125I]BTX), and muscarinic receptors, quantified by the binding of [3H]quinuclidinyl benzilate ([3H]QNB), were then assayed in eight brain regions. An increase in [3H]nicotine binding was observed in all regions except cerebellum following chronic infusion with nicotine and anabasine, whereas lobeline did not alter the number or affinity of these binding sites. This increase was due to changes in Bmax and not in the affinity of the receptor for the ligand (KD). A slight increase in alpha-[125I]BTX binding was observed in cortex following chronic anabasine infusion. [3H]QNB binding sites were largely unaltered following chronic infusion with any of the nicotinic analogs. The levels of the agonists in the brain were also determined after chronic treatment, and the amounts of lobeline and anabasine were found to be higher than that of nicotine. Thus, the failure of lobeline to elicit changes in nicotine binding is not due to reduced brain concentrations.  相似文献   

7.
Neosurugatoxin, a Specific Antagonist of Nicotinic Acetylcholine Receptors   总被引:8,自引:6,他引:2  
Neosurugatoxin (NSTX) (3 nM-30 nM), recently isolated from the Japanese ivory mollusc (Babylonia japonica) exerted a potent antinicotinic action in the isolated guinea pig ileum. Specific [3H]nicotine binding to rat forebrain membranes was saturable, reversible, and of high affinity. Nicotinic cholinergic agonists exhibited a markedly greater affinity for [3H]nicotine binding sites than a muscarinic agonist, oxotremorine. Although alpha-bungarotoxin had no effect on [3H]nicotine binding, low concentrations (1 nM-1 microM) of NSTX inhibited [3H]nicotine binding in the forebrain membranes and its IC50 value was 69 +/- 6 nM. On the other hand, NSTX did not affect muscarinic receptor binding in the brain. These data indicate that NSTX may be of appreciable interest as a neurotoxin with a selective affinity for ganglionic nicotinic receptors.  相似文献   

8.
Monoclonal antibodies raised against the nicotinic acetylcholine receptor of Electrophorus electricus electroplaque have been used as probes to characterize putative nicotinic acetylcholine receptors in goldfish brain. One monoclonal antibody (mAb), mAb 47, recognized a protein which binds both (-)-[3H]nicotine and 125I-alpha-bungarotoxin with high affinity. Another monoclonal antibody (mAb 172) recognized a protein which binds (-)-[3H]nicotine but not 125I-alpha-bungarotoxin. Both antibodies precipitated a protein(s) (biosynthetically labeled with [35S]methionine) in the absence, but not in the presence, of excess purified nicotinic acetylcholine receptor from Torpedo nobiliana. The dilution of mAb 47 that precipitated half of the maximum amount of 125I-alpha-bungarotoxin binding protein was the same as that which precipitated half of the maximum amount of (-)-[3H]nicotine binding activity. When used in combination, the two antibodies precipitated more (-)-[3H]nicotine radioactivity than either antibody alone. The (-)-[3H]nicotine and 125I-alpha-bungarotoxin binding component-mAb complexes were characterized by sucrose density centrifugation. In the presence of either mAb 172 or 47, the (-)-[3H] nicotine binding component migrated further into the gradient, but only mAb 47 shifted the 125I-alpha-bungarotoxin peak. Incubation of solubilized brain extract with alpha-bungarotoxin-coupled Sepharose reduced the amount of (-)-[3H]nicotine radioactivity precipitated by mAb 47 but not by mAb 172. These data suggest that the antibodies may recognize distinct subtypes of (-)-nicotine binding sites in goldfish brain, one subtype which binds both 125I-alpha-bungarotoxin and (-)-[3H]nicotine and a second subtype which binds only (-)-[3H] nicotine.  相似文献   

9.
We have studied putative nicotinic acetylcholine receptors in the optic lobe of the newborn chick, using 125I-labeled alpha-bungarotoxin, a specific blocker of acetylcholine receptors in the neuromuscular junction, and [3H]acetylcholine, a ligand which in the presence of atropine selectively labels binding sites of nicotinic character in rat brain cortex (Schwartz et al., 1982). [3H]Acetylcholine binds reversibly to a single class of high affinity binding sites (KD = 2.2 X 10(-8) M) which occur at a tissue concentration of 5.7 pmol/g. A large fraction (approximately 60%) of these binding sites is solubilized by Triton X-100, sodium cholate, or the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Solubilization increases the affinity for acetylcholine and several nicotinic drugs from 1.5- to 7-fold. The acetylcholine-binding macromolecule resembles the receptor for alpha-bungarotoxin present in the same tissue with respect to subcellular distribution, hydrodynamic properties, lectin binding, and agonist affinity rank order. It differs from the toxin receptor in affinity for nicotinic antagonists, sensitivity to thermal inactivation, and regional distribution. The solubilized [3H]acetylcholine binding activity is separated from the toxin receptor by incubation with agarose-linked acetylcholine, by affinity chromatography on immobilized Naja naja siamensis alpha-toxin, and by precipitation with a monoclonal antibody to chick optic lobe toxin receptor.  相似文献   

10.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

11.
R Haring  Y Kloog 《Life sciences》1984,34(11):1047-1055
Binding of [3H]-phencyclidine ( [3H]-PCP) to acetylcholine-receptor enriched membrane from Torpedo ocellata electric organ was studied over a ligand concentration range of 1 to 200 microM. The results indicate that [3H]-PCP is bound to two classes of sites: high affinity (Kd = 6-9 microM) and low affinity (Kd = 85 microM) binding sites. In the absence of cholinergic drugs the ratio of high affinity [3H]-PCP binding sites to 125I-alpha-bungarotoxin (alpha-Bgt) binding sites is 0.37, and that of low affinity [3H]-PCP binding sites to 125I-alpha-Bgt is 1.06. Low affinity [3H]-PCP binding can be completely inhibited by alpha-bungarotoxin (alpha-Bgt), carbamylcholine and d-tubocurarine. This inhibition, together with the one to one stoichiometry with 125I-alpha-Bgt, suggests that the sites to which [3H]-PCP binds with low affinity are the acetylcholine (AcCho) binding sites. In the presence of 1 microM alpha-Bgt which blocks binding of [3H]-PCP to the AcCho binding sites, the ratio of high affinity [3H]-PCP sites to 125I-alpha-Bgt sites is 0.5, indicating the existence of one high affinity PCP site per receptor molecule, The toxin, however, decreases the apparent affinity of [3H]-PCP towards the AcCho receptor as well as the potency of tetracaine or dibucaine in inhibiting [3H]-PCP binding to that receptor. In the latter case the effect involves changes from a biphasic to a simple inhibition curve. The results suggest that non-competitive blockers to the AcCho receptors may affect their own sites as well, and that they do this also by binding to the AcCho binding sites. This is also inferred from the accelerated dissociation of [3H]-PCP from its high affinity binding sites by unlabeled PCP in the concentration range of 10(-3) to 10(-4) M, at which the drug occupies AcCho binding sites as well.  相似文献   

12.
Acetylcholine receptor (AChR) purified from human skeletal muscle affinity-alkylated with bromoacetyl[methyl-3H]choline bromide ([3H]BAC) in mildly reducing conditions to yield a specifically radiolabeled polypeptide, Mr 44,000, the alpha-subunit. The binding of [125I]alpha-bungarotoxin to AChR was completely inhibited by affinity-alkylation, indicating that the human AChR's binding site for alpha-bungarotoxin is closely associated with the alpha-subunit's acetylcholine binding site. Structures in the vicinity of the alpha-bungarotoxin binding sites of AChRs from human muscle and Torpedo electric organ were compared by varying the conditions of alkylation. Under optimal conditions of reduction and alkylation, both human and Torpedo AChR incorporated BAC in equivalence to the number of alpha-bungarotoxin binding sites. However, with limited conditions of reduction but sufficient BAC to alkylate 100% of the alpha-bungarotoxin binding sites of human AChR, only 71% of the Torpedo AChR's binding sites were alkylated. In optimal conditions of reduction but with the minimal concentration of BAC that permitted 100% alkylation of the human AChR's alpha-bungarotoxin sites, only 74% of the Torpedo AChR's binding sites were alkylated. These data suggest that the neurotransmitter binding region of human muscle AChR is structurally dissimilar from that of Torpedo electric organ, having a higher binding affinity for BAC and an adjacent disulfide bond that is more readily accessible to reducing agents.  相似文献   

13.
A human neuroblastoma cell line, IMR32, has been characterized as far as morphology, membrane receptors for neurotransmitters, and uptake and release of [3H]3,4-dihydroxyphenylethylamine ([3H]dopamine). These cells expressed at their surface both nicotinic and muscarinic cholinergic receptors, revealed by [125I]alpha-bungarotoxin and [3H]quinuclidinylbenzilate ([3H]QNB) binding, respectively. [125I]alpha-Bungarotoxin binding was efficiently inhibited by alpha-bungarotoxin, nicotine, carbachol, and d-tubocurarine. [3H]QNB binding was competitively inhibited by atropine, pirenzepine, and carbachol. Hexamethonium did not affect the binding of either ligand. In competition experiments with [3H]QNB, pirenzepine recognized only one binding site with "low affinity," and carbachol recognized two sites with different affinities. beta-adrenergic receptors were present in a very low amount, whereas alpha-adrenergic and dopaminergic receptors were not detectable. IMR32 cells had an imipramine-sensitive [3H]dopamine uptake, but carbachol, high levels of K+, the calcium ionophore A23187, and alpha-latrotoxin were not able to induce release of [3H]dopamine that had been taken up. The ultrastructural analysis showed that IMR32 cells contained very few dense-core vesicles, suggesting a low storage capacity for neurotransmitter. These cells could be an useful in vitro model for studying neurotransmitter receptors of the human CNS.  相似文献   

14.
Purification of L-[3H]nicotine eliminates low affinity binding   总被引:3,自引:0,他引:3  
Some studies of L-[3H]nicotine binding to rodent and human brain tissue have detected two binding sites as evidenced by nonlinear Scatchard plots. Evidence presented here indicates that the low affinity binding site is not stereospecific, is not inhibited by low concentrations of cholinergic agonists and is probably due to breakdown products of nicotine since purification of the L-[3H]nicotine eliminates the low affinity site.  相似文献   

15.
An approximate 140-fold purification of the A1 adenosine receptor of bovine cerebral cortex has been obtained via affinity chromatography. The affinity column consists of Affi-Gel 10 coupled through an amide linkage to XAC, a high-affinity A1 adenosine receptor antagonist. As assessed by [3H]XAC binding, bovine brain membranes solubilized with the detergent CHAPS had a specific binding activity of 1.1 pmol/mg protein. Interaction of solubilized A1 adenosine receptors with the XAC-Affi-Gel was biospecific and 30% of the receptor activity was bound by the gel. Demonstration of [3H]XAC binding in the material eluted from the column with R-PIA required insertion of receptor into phospholipid vesicles. The specific activity of the affinity column purified receptor was 146 +/- 22 pmol/mg protein with typically 5-15% of the bound receptor recovered. The purified receptor displayed high-affinity antagonist binding and bound agonists with the potency order expected of the bovine brain A1 adenosine receptor: R-PIA greater than S-PIA greater than NECA. In purified preparations, the photoaffinity probe [125I]PAPAXAC-SANPAH specifically labelled a protein of molecular mass 38,000 which has previously been shown to be the A1 adenosine receptor binding subunit.  相似文献   

16.
The urotensin II (UII) gene is primarily expressed in the central nervous system, but the functions of UII in the brain remain elusive. Here, we show that cultured rat astrocytes constitutively express the UII receptor (UT). Saturation and competition experiments performed with iodinated rat UII ([(125)I]rUII) revealed the presence of high- and low-affinity binding sites on astrocytes. Human UII (hUII) and the two highly active agonists hUII(4-11) and [3-iodo-Tyr9]hUII(4-11) were also very potent in displacing [(125)I]rUII from its binding sites, whereas the non-cyclic analogue [Ser5,10]hUII(4-11) and somatostatin-14 could only displace [(125)I]rUII binding at micromolar concentrations. Reciprocally, rUII failed to compete with [(125)I-Tyr0,D-Trp8]somatostatin-14 binding on astrocytes. Exposure of cultured astrocytes to rUII stimulated [(3)H]inositol incorporation and increased intracellular Ca(2+) concentration in a dose-dependent manner. The stimulatory effect of rUII on polyphosphoinositide turnover was abolished by the phospholipase C inhibitor U73122, but only reduced by 56% by pertussis toxin. The GTP analogue Gpp(NH)p caused its own biphasic displacement of [(125)I]rUII binding and provoked an affinity shift of the competition curve of rUII. Pertussis toxin shifted the competition curve towards a single lower affinity state. Taken together, these data demonstrate that rat astrocytes express high- and low-affinity UII binding sites coupled to G proteins, the high-affinity receptor exhibiting the same pharmacological and functional characteristics as UT.  相似文献   

17.
The binding properties of the 125I-labeled phencyclidine derivative N-[1-(3-[125I]iodophenyl)cyclohexyl]piperidine (3-[125I]iodo-PCP), a new ligand of the N-methyl-D-aspartate (NMDA)-gated ionic channel, were investigated. Association and dissociation kinetic curves of 3-[125I]iodo-PCP with rat brain homogenates were well described by two components. About 32% of the binding was of fast association and fast dissociation, and the remaining binding was of slow association and slow dissociation. Saturation curves of 3-[125I]iodo-PCP also were well described using two binding sites: one of a high affinity (KDH = 15.8 +/- 2.3 nM) and the other of a low affinity (KDL = 250 +/- 40 nM). 3-Iodo-PCP inhibited the binding of 3-[125I]iodo-PCP with inhibition curves that were well fitted by a two-site model. The binding constants (KiH, BmaxH; KiL, BmaxL) so obtained were close to those obtained in saturation experiments. Ligands of NMDA-gated ionic channels also inhibited the binding of 3-[125I]iodo-PCP with two constants, KiH and KiL. There was a very good correlation (r = 0.987) between the affinities of these ligands to bind to NMDA-gated ionic channels and their potencies to inhibit the binding of 3-[125I]iodo-PCP with a high affinity. Moreover, the regional distribution of the high-affinity binding of 3-[125I]-iodo-PCP paralleled that of tritiated N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP). In contrast to that of [3H] TCP, the binding of 3-[125I]iodo-PCP to well-washed rat brain membranes was fast and insensitive to glutamate and glycine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Two distinct binding sites with properties corresponding to those expected for nicotinic cholinergic receptors can be identified in brain by the specific binding of nicotine (or acetylcholine) and alpha-bungarotoxin. The effects of modification of these binding sites by treatment with the disulfide-reducing agent dithiothreitol were examined in tissue prepared from DBA mouse brains. Treatment with dithiothreitol reduced the binding measured with either ligand, and reoxidization of the disulfides fully restored binding. The effects of dithiothreitol treatment appeared to be due to a reduction in the maximal binding of nicotine and to a decrease in the binding affinity for alpha-bungarotoxin. Agonist affinity for the alpha-bungarotoxin binding site was reduced by treatment with low concentrations of dithiothreitol. The nicotine binding sites remaining after disulfide treatment displayed rates of ligand association and dissociation similar to those of unmodified tissue, but treatment of previously unmodified tissue with dithiothreitol accelerated the rate of nicotine dissociation. After reduction, both binding sites could be selectively alkylated with bromoacetylcholine. The results suggest that both putative nicotinic receptors in brain respond similarly to disulfide reduction and that their responses resemble those known for the nicotinic receptor of electric tissue.  相似文献   

19.
Abstract

Analysis of (-)[125]iodo-N6-(4-hydroxyphenylisopropyl)-adenosine ([125I]HPIA) binding to purified sarcolemmal preparations of guinea pig and bovine hearts revealed two classes of binding sites when unlabeled iodo-HPIA (100 μmol/1) was used as non-specific binding marker. In the presence of 1 mmol/1 theophylline, however, only the high affinity component was detected. Adenosine receptor agonists caused biphasic displacement of [125I]HPIA binding, with a high affinity potency rank order typical of interaction with A1-adenosine receptors. Biphasic competition curves were also observed with 8-phenyltheophylline and isobutylmethylxanthine, whereas the theophylline curve was monophasic up to 1 mmol/1. In brain membranes, specific binding of [125I]HPIA as well as of [3H]PIA was further reduced when unlabeled iodo-HPIA replaces theophylline as the non-specific binding marker. These results suggest the presence of two [125I]HPIA binding sites on cardiac sarcolemma and brain membranes, but receptor function can only be ascribed to the high affinity sites. The low affinity site probably represents an artefact, which is often observed when non-specific binding is defined with the unlabeled counterpart or a structurally related ligand of the radioligand used.  相似文献   

20.
We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号