首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Marine biofouling has detrimental effects on the environment and economy, and current antifouling coatings research is aimed at environmentally benign, non-toxic materials. The possibility of using contact-active coatings is explored, by considering the antialgal activity of cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes. The antialgal activity was investigated via zoospore settlement and sporeling growth assays of the marine algae Ulva linza and U. lactuca. The assay results for PDMAEMA brushes were compared to those for anionic and neutral surfaces. It was found that only PDMAEMA could disrupt zoospores that come into contact with it, and that it also inhibits the subsequent growth of normally settled spores. Based on the spore membrane properties, and characterization of the PDMAEMA brushes over a wide pH range, it is hypothesized that the algicidal mechanisms are similar to the bactericidal mechanisms of cationic polymers, and that further development could lead to successful contact-active antialgal coatings.  相似文献   

2.
Reversibly shielded DNA polyplexes based on bioreducible poly(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA) triblock copolymers were designed, prepared and investigated for in vitro gene transfection. Two PDMAEMA-SS-PEG-SS-PDMAEMA copolymers with controlled compositions, 6.6-6-6.6 and 13-6-13 kDa, were obtained by reversible addition-fragmentation chain transfer (RAFT) polymerization of dimethylaminoethyl methacrylate (DMAEMA) using CPADN-SS-PEG-SS-CPADN (CPADN: 4-cyanopentanoic acid dithionaphthalenoate; PEG: 6 kDa) as a macro-RAFT agent. Like their nonreducible PDMAEMA-PEG-PDMAEMA analogues, PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers could effectively condense DNA into small particles with average diameters less than 120 nm and close to neutral zeta potentials (0 ~ +6 mV) at and above an N/P ratio of 3/1. The resulting polyplexes showed excellent colloidal stability against 150 mM NaCl, which contrasts with polyplexes of 20 kDa PDMAEMA homopolymer. In the presence of 10 mM dithiothreitol (DTT), however, polyplexes of PDMAEMA-SS-PEG-SS-PDMAEMA were rapidly deshielded and unpacked, as revealed by significant increase of positive surface charges as well as increase of particle sizes to over 1000 nm. Release of DNA in response to 10 mM DTT was further confirmed by gel retardation assays. These polyplexes, either stably or reversibly shielded, revealed a low cytotoxicity (over 80% cell viability) at and below an N/P ratio of 12/1. Notably, in vitro transfection studies showed that reversibly shielded polyplexes afforded up to 28 times higher transfection efficacy as compared to stably shielded control under otherwise the same conditions. Confocal laser scanning microscope (CLSM) studies revealed that reversibly shielded polyplexes efficiently delivered and released pDNA into the perinuclei region as well as nuclei of COS-7 cells. Hence, reduction-sensitive reversibly shielded DNA polyplexes based on PDMAEMA-SS-PEG-SS-PDMAEMA are highly promising for nonviral gene transfection.  相似文献   

3.
4.
We report the synthesis of poly(methacrylic acid)-co-(oleyl methacrylate) with three different amounts of oleyl methacrylate and compare the ability of these polymers with that of poly(methacrylic acid)-co-(cholesteryl methacrylate) (PMA(c)) to noncovalently anchor liposomes to polymer layers. We subsequently assembled ~1 μm diameter PMA(c)-based capsosomes, polymer hydrogel capsules that contain up to ~2000 liposomal subcompartments, and investigate the potential of these carriers to deliver water-insoluble drugs by encapsulating two different antitumor compounds, thiocoraline or paclitaxel, into the liposomes. The viability of lung cancer cells is used to substantiate the cargo concentration-dependent activity of the capsosomes. These findings cover several crucial aspects for the application of capsosomes as potential drug delivery vehicles.  相似文献   

5.
Guo W  Hu N 《Biophysical chemistry》2007,129(2-3):163-171
Myoglobin (Mb), with net positive surface charges at pH 5.0, was successfully assembled into layer-by-layer films on various solid surfaces with poly(methacrylic acid) (PMAA) at different pH, designated as {PMAA(pH 5.0)/Mb}n, {PMAA(pH 6.5)/Mb}n, and {PMAA(pH 8.0)/Mb}n, respectively. As a weak polycarboxylic acid with pKa=6 - 7, PMAA carried different negative charges at different pH due to different ionization degree of its carboxylic acid groups. Quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV) were used to monitor and confirm the assembly of {PMAA/Mb}n films. All the results showed that the adsorption amount of Mb in each bilayer had an "unexpected" sequence of {PMAA(pH 5.0)/Mb}n>{PMAA(pH 6.5)/Mb}n>{PMAA(pH 8.0)/Mb}n, which could be explained by the formation of soluble complex of PMAA-Mb at pH 8.0 and the cooperative effect of hydrogen bonding and induced electrostatic interaction between Mb and PMAA at pH 5.0. The influence of ionic strength in exposure solution and in Mb adsorbate solution was investigated, and the results supported the above explanations. The {PMAA/Mb}n films provided a suitable microenvironment for Mb to retain its near-native structure and transfer electron with underlying electrodes. The reversible CV peak pair for Mb Fe(III)/Fe(II) redox couple could be used to catalyze reduction of hydrogen peroxide electrochemically, showing the potential applicability of the films as the new type of biosensors or bioreactors based on the direct electrochemistry of Mb. The electrochemical and electrocatalytic behaviors of protein layer-by-layer films with weak polyelectrolytes could thus be controlled by adjusting the solution pH of weak polyelectrolytes.  相似文献   

6.
Surface plasmon resonance (SPR) biosensors capable of in real time detection of Cronobacter at concentrations down to 10? cells mL?1 in samples of consumer fresh-whole fat milk, powder whole-fat milk preparation, and powder infant formulation were developed for the first time. Antibodies against Cronobacter were covalently attached onto polymer brushes of poly(2-hydroxyethyl methacrylate) (poly(HEMA)) grafted from the SPR chip surface. The lowest detection limit, 10? cells mL?1, was achieved in phosphate buffered saline (pH 7.4) with sensors prepared by covalent immobilization of the same antibodies onto a self assembled monolayer (SAM) of hexa(ethylene glycol) undecanethiol (EG?). However, when the EG? based sensors were challenged with milk samples the non-specific response due to the deposition of non-targeted compounds from the milk samples was much higher than the specific response to Cronobacter hampering the detection in milk. Similar interfering fouling was observed on antifouling polymer brushes of hydroxy-capped oligoethylene glycol methacrylate and even a 10 times higher fouling was observed on the widely used SAM of mixed hydroxy- and carboxy-terminated alkanethiols. Only poly(HEMA) brushes totally suppressed the fouling from milk samples. The robust well-controlled surface initiated atom transfer radical polymerization of HEMA allowed the preparation of highly dense brushes with a minimal thickness so that the capture of antigens by the antibodies immobilized on the brush layer could take place close to the gold SPR surface to provide a stronger optical response while the fouling was still suppressed. A minimum thickness of 19 nm of poly(HEMA) brush layer was necessary to suppress completely non-specific sensor response to fouling from milk.  相似文献   

7.
We report a novel method for micropatterning of active proteins on anti-fouling surfaces via spatially well-defined and dense binary poly(ethylene glycol)s (PEGs) brushes with controllable protein-docking sites. Binary brushes of poly(poly(ethylene glycol) methacrylate-co-poly(ethylene glycol)methyl ether methacrylate), or P(PEGMA-co-PEGMEMA), and poly(poly(ethylene glycol)methyl ether methacrylate), or P(PEGMEMA), were prepared via consecutive surface-initiated atom transfer radical polymerizations (SI-ATRPs) from a resist-micropatterned Si(100) wafer surface. The terminal hydroxyl groups on the side chains of PEGMA units in the P(PEGMA-co-PEGMEMA) microdomains were activated directly by 1,1'-carbonyldiimidazole (CDI) for the covalent coupling of human immunoglobulin (IgG) (as a model active protein). The resulting IgG-coupled PEG microdomains interact only and specifically with target anti-IgG, while the other PEG microregions effectively prevent specific and non-specific protein fouling. When extended to other active biomolecules, microarrays for specific and non-specific analyte interactions with a high signal-to-noise ratio could be readily tailored.  相似文献   

8.
In this novel platform, a micropatterned polymer brush was obtained by grafting poly(poly(ethylene glycol) methyl ether methacrylate) (poly(PEGMA)) from a thin macroinitiator film using atom transfer radical polymerization (ATRP). A pattern of holes was formed in the macroinitiator film by taking advantage of its spontaneous dewetting above the glass transition temperature from a bottom polystyrene film, driven by unfavorable intermolecular forces. Patterning by dewetting can be achieved at length-scales from a few hundred nanometers to several tens of micrometers, by simply thermally annealing the bilayer above the glass transition temperature of the polymer. This approach is substrate-independent, as polymer films can be cast onto surfaces of different size, shape, or material. As a demonstration of its potential, proteins, and individual cells were attached on targeted bioadhesive polystyrene areas of the micropatterns within poly(PEGMA) protein-repellent brushes. We anticipate this approach will be suitable for the patterning of brushes, especially for biomedical applications such as in the study of single cells and of cell cocultures.  相似文献   

9.
Herein we report on the synthesis and sensor activity of a novel pH sensitive probe designed as highly water-soluble fluorescent micelles by grafting of 1,8-naphthalimide–rhodamine bichromophoric FRET system (RNI) to the PMMA block of a well-defined amphiphilic diblock copolymer—poly(methyl methacrylate)–b-poly(methacrylic acid) (PMMA48b-PMAA27). The RNI-PMMA48b-PMAA27 adduct is capable of self-assembling into micelles with a hydrophobic PMMA core, containing the anchored fluorescent probe, and a hydrophilic shell composed of PMAA block. Novel fluorescent micelles are able to serve as a highly sensitive pH probe in water and to internalize successfully HeLa and HEK cells. Furthermore, they showed cell specificity and significantly higher photostability than that of a pure organic dye label such as BODIPY. The valuable properties of the newly prepared fluorescent micelles indicate the high potential of the probe for future biological and biomedical applications.  相似文献   

10.
Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels   总被引:1,自引:0,他引:1  
Marine mussels anchor to a variety of surfaces by secreting liquid proteins that harden and form water-resistant bonds to a variety of surfaces. Studies have revealed that these mussel adhesive proteins contain an unusual amino acid, 3,4-dihydroxy-L-phenylalanine (DOPA), which is believed to be responsible for the cohesive and adhesive properties of these proteins. To separate the cohesive and adhesive roles of DOPA, we incorporated DOPA into the midblock of poly(methyl methacrylate)-poly(methacrylic acid)-poly(methyl methacrylate) (PMMA-PMAA-PMMA) triblock copolymers. Self-assembled hydrogels were obtained by exposing triblock copolymer solutions in dimethyl sulfoxide to water vapor. As water diffused into the solution, the hydrophobic end blocks formed aggregates that were bridged by the water-soluble midblocks. Strong hydrogels were formed with polymer weight fractions between 0.01 and 0.4 and with shear moduli between 1 and 5 kPa. The adhesive properties of the hydrogels on TiO2 surfaces were investigated by indentation with a flat-ended cylindrical punch. At pH values of 6 and 7.4, the fully protonated DOPA groups were highly adhesive to the TiO2 surfaces, giving values of approximately equal to 2 J/m2 for the interfacial fracture energy, which we believe corresponds to the cohesive fracture energy of the hydrogel. At these pH values, the DOPA groups are hydrophobic and have a tendency to aggregate, so contact times of 10 or 20 min are required for these high values of the interfacial strength to be observed. At a pH of 10, the DOPA groups were hydrophilic and highly swellable, but less adhesive gels were formed. Oxidation of DOPA groups, a process that is greatly accelerated at a pH of 10, decreased the adhesive performance of the hydrogels even further.  相似文献   

11.
The nonstoichiometric polyelectrolyte complex (PEC) formed by poly(methacrylic acid) (degree of polymerization 1830) (PMAA)and poly(N-ethyl-4-vinyl-pyridinium bromide) (degree of polymerization 530) (PEVP) undergoes reversible precipitation from aqueous solution at any desired pH-value in the range 4.5–6.5 depending on the ionic strength and PEVP/PMAA ratio in the complex. The antigen, inactivated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from rabbit was covalently coupled to PEVP. The resulting GAPDH–PEVP/PMAA complex was used for the purification of antibodies from a 6G7 clone specific towards inactivated GAPDH. The crude extract was incubated with GAPDH-containing PEC and the precipitation of the PEC was carried out at 0.01 M NaCl and pH 4.5, 5.3, 6.0 and 6.5 using PEC with PEVP/PMAA ratios of 0.45, 0.3, 0.2 and 0.15, respectively. Purified antibodies were eluted at pH 4.0 where PECs of all compositions used were insoluble.PEC precipitation is accompanied only by small nonspecific coprecipitation of proteins. Precipitated PEC could be dissolved at pH 7.3 and used repeatedly. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
To improve the antimicrobial ability of silicon-based bioelectronics and to tailor the silicon surfaces for inhibiting biofilm formation, well-defined functional polymer-Si(100) hybrids, consisting of nearly monodispersed poly((2-dimethylamino)ethyl methacrylate) (P(DMAEMA)) covalently tethered on the silicon surface and functionalized by viologen moieties, were prepared. P(DMAEMA)-Si hybrids were prepared via surface-initiated atom transfer radical polymerization (ATRP) of (2-dimethylamino)ethyl methacrylate (DMAEMA) on the hydrogen-terminated Si(100) surfaces (Si−H surfaces). The tertiary amino groups of the covalently immobilized (Si−C bonded) P(DMAEMA) brushes on the silicon substrates were quaternized by an alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. Alternatively, covalent coupling of viologen moieties to the tertiary amino groups of P(DMAEMA) brushes produced the quaternized P(DMAEMA)-Si(100) hybrids with substantially enhanced antimicrobial capability, as well as capability to effectively inhibit biofilm formation. Thus, the viologen-quaternized P(DMAEMA)-Si(100) hybrids possess good antibacterial surface properties and are potentially useful to the silicon-based bioelectronics to ensure their efficiency, durability and reliability.  相似文献   

13.
Protein-based vaccines have significant potential as infectious disease and anticancer therapeutics, but clinical impact has been limited in some applications by their inability to generate a coordinated cellular immune response. Here, a pH-responsive carrier incorporating poly(propylacrylic acid) (PPAA) was evaluated to test whether improved cytosolic delivery of a protein antigen could enhance CD8+ cytotoxic lymphocyte generation and prophylactic tumor vaccine responses. PPAA was directly conjugated to the model ovalbumin antigen via reducible disulfide linkages and was also tested in a particulate formulation after condensation with cationic poly(dimethylaminoethyl methacrylate) (PDMAEMA). Intracellular trafficking studies revealed that both PPAA-containing formulations were stably internalized and evaded exocytotic pathways, leading to increased intracellular accumulation and potential access to the cytosolic MHC-1 antigen presentation pathway. In an EG.7-OVA mouse tumor protection model, both PPAA-containing carriers robustly inhibited tumor growth and led to an approximately 3.5-fold increase in the longevity of tumor-free survival relative to controls. Mechanistically, this response was attributed to the 8-fold increase in production of ovalbumin-specific CD8+ T-lymphocytes and an 11-fold increase in production of antiovalbumin IgG. Significantly, this is one of the first demonstrated examples of in vivo immunotherapeutic efficacy using soluble protein-polymer conjugates. These results suggest that carriers enhancing cytosolic delivery of protein antigens could lead to more robust CD8+ T-cell response and demonstrate the potential of pH-responsive PPAA-based carriers for therapeutic vaccine applications.  相似文献   

14.
We report on the layer-by-layer design principles of poly(methacrylic acid) (PMAA) ultrathin hydrogel coatings that release antimicrobial agents (AmAs) in response to pH variations. The studied AmAs include gentamicin and an antibacterial cationic peptide L5. Adipic acid dihydrazide (AADH) is a cross-linker which, relative to ethylenediamine (EDA), increases the hydrogel hydrophobicity and introduces centers for hydrogen bonding to AmAs. AmA retention in AADH-cross-linked hydrogels in high-salt solutions was enhanced while AmA release at low pH was suppressed. L5 retains its antibacterial activity toward planktonic Staphylococcus epidermidis after release from PMAA hydrogels in response to pH decreases in the surrounding medium due to bacterial growth. Staphylococcus epidermidis adhesion and colonization was almost completely inhibited by L5 loading of hydrogels. The AmA-releasing and AmA-retaining properties of these hydrogel coatings provide new opportunities to study the fundamental mechanisms of AmA-coating-bacteria interactions and develop a new class of clinically relevant antibacterial coatings for medical devices.  相似文献   

15.
Herein we report the synthesis of cellulose nanocrystals (CNCs) grafted with poly(acrylic acid) (PAA) chains of different lengths using Cu-mediated surface initiated-controlled radical polymerization (SI-CRP). First, poly(tert-butylacrylate) (PtBA) brushes were synthesized; then, subsequent acid hydrolysis was used to furnish PAA brushes tethered onto the CNC surfaces. The CNCs were chemically modified to create initiator moieties on the CNC surfaces using chemical vapor deposition (CVD) and continued in solvent phase in DMF. A density of initiator groups of 4.6 bromine ester groups/nm(2) on the CNC surface was reached, suggesting a dense functionalization and a promising starting point for the controlled/living radical polymerization. The SI-CRP of tert-butylacrylate proceeded in a well-controlled manner with the aid of added sacrificial initiator, yielding polymer brushes with polydispersity values typically well below 1.12. We calculated the polymer brush grafting density to almost 0.3 chains/nm(2), corresponding to high grafting densities and dense polymer brush formation on the nanocrystals. Successful rapid acid hydrolysis to remove the tert-butyl groups yielded pH-responsive PAA-polyelectrolyte brushes bound to the CNC surface. Individually dispersed rod-like nanoparticles with brushes of PtBA or PAA were clearly visualized by AFM and TEM imaging.  相似文献   

16.
Polypropylene (PP) coated by a non-leachable biocide was prepared by chemically attaching poly(quaternary ammonium) (PQA) to the surface of PP. The well-defined poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), a precursor of PQA, was grown from the surface of PP via atom transfer radical polymerization (ATRP). The tertiary ammine groups in PDMAEMA were consequently converted to QA in the presence of ethyl bromide. Successful surface modification was confirmed by ATR-FTIR, contact angle measurement, and an antibacterial activity test against Escherichia coli (E. coli). The biocidal activity of the resultant surfaces depends on the amount of the grafted polymers (the number of available quaternary ammonium units). With the same grafting density, the surface grafted with relatively high MW polymers (M(n) > 10,000 g/mol) showed almost 100% killing efficiency (killing all of the input E. coli (2.9 x 10(5)) in the shaking test), whereas a low biocidal activity (85%) was observed for the surface grafted with shorter PQA chains (M(n) = 1,500 g/mol).  相似文献   

17.
Diblock copolymers composed of poly(epsilon-caprolactone) (PCL) and poly(N,N-dimethylamino-2-ethyl methacrylate) (PDMAEMA), or methoxy polyethylene glycol(PEG), were synthesized via a combination of ring-opening polymerization and atom-transfer radical polymerization in order to prepare polymeric nanoparticles as an antifungal drug carrier. Amphotericin B (AmB), a natural antibiotic, was incorporated into the polymeric nanoparticles. The physical properties of AmB-incorporated polymeric nanoparticles with PCL-b-PDMAEMA and PCL-b-PEG were studied in relation to morphology and particle size. In the aggregation state study, AmB-incorporated PCL-b- PDMAEMA nanoparticles exhibited a monomeric state pattern of free AmB, whereas AmB-incorporated PCL-b- PEG nanoparticles displayed an aggregated pattern. In in vitro hemolysis tests with human red blood cells, AmBincorporated PCL-b-PDMAEMA nanoparticles were seen to be 10 times less cytotoxic than free AmB (5 microgram/ml). In addition, an improved antifungal activity of AmBincorporated polymeric nanoparticles was observed through antifungal activity tests using Candida albicans, whereas polymeric nanoparticles themselves were seen not to affect activity. Finally, in vitro AmB release studies were conducted, proving the potential of AmB-incorporated PCL-b-PDMAEMA nanoparticles as a new formulation candidate for AmB.  相似文献   

18.
19.
B Zimmermann 《Acta anatomica》1992,145(3):277-282
Mineralization at collagen fibrils is regulated by glycosaminoglycans (GAG). Alterations in proteoglycan composition during mineralization as well as inhibition of mineralization by GAGs are well documented. Collagen-GAG interactions during desmoid osteogenesis in fetal rat calvariae were investigated ultrastructurally by means of different fixation techniques. Mineralization was restricted to the collagen of the osteoid at the ectocranial side. Beyond the osteoid, one layer containing degenerated cells was found, followed by sheets of healthy osteoblasts with nonmineralized collagen fibrils. These fibrils were ordered in bundles, but were irregularly arranged in the mineralized osteoid. After fixation in glutaraldehyde-ruthenium red (GA-RR), small RR-positive granules were periodically attached to the fibrils of the nonmineralized collagen. These granules were absent at collagen in the mineralized osteoid. Periodically bound granules (periodicity of 62 nm) could clearly be demonstrated along collagen fibrils by pretreatment with the positively charged protamine sulfate and subsequent fixation in GA-RR in the nonmineralized collagen. In the mineralized osteoid, however, these granules were present, but periodic binding was missing. Heparin pretreatment followed by fixation in GA-RR revealed periodically bound fine strands between collagen fibrils running parallel in the nonmineralized collagen; these threads were absent in the mineralizing osteoid. Restriction of mineralization to osteoid at the mineralization border may be reflected by the observed changes in GAG binding to collagen fibrils within the osteoid of developing fetal calvariae in contrast to binding to collagen in nonmineralized areas.  相似文献   

20.
Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号