首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
遗传密码的高维空间对称性   总被引:3,自引:2,他引:1  
对称性是由均衡比例产生的匀称美。对称性和对称破缺在自然界和生命现象中普遍存在。20种氨基酸和终止码共有64个遗传密码子,组成一个6维的编码空间。遗传密码空间以对称轴将空间分成对称的两大部分:嘌呤空间和嘧啶空间。遗传密码子的简并以对称轴为参考轴,呈平行排列。高简并度氨基酸(6,4,3,简并度)和低筒并度氨基酸(1,2简并度)的简并子空间近似呈周期性的双方错方式排列。遗传密码的简并与4种核苷酸的二进制数字编码,具有密切的关系。经过分析,可得出遗传密码的连通性λλ简并法则:“除丝氨酸的密码子分成两个与对称轴平行的,分离的子空间之外,其余氨基酸和终止密码的密码子,都通过与空间对称轴平行的λλ平面或λ边简并,组成独立的,单一的连通子空间。”并对氨基酸密码子的惯用率与编码空间的对称关系,以及数字生物学的意义进行了分析和讨论。  相似文献   

2.
线粒体遗传密码及基因组遗传密码的对称分析   总被引:7,自引:1,他引:6  
病毒、细菌和真核生物的氨基酸编码都使用相同的遗传密码,表明它们可能有共同的来源。但人和牛的线粒体的遗传密码和基因组的遗传密码相比,出现以下不同;(1)ATA编码甲硫氮酸M而不是异亮氨酸I。(2)TGA不再是终止密码子X而编码色氨酸W。(3)AGA和AGG不再是精氨酸R的密码子而变为终止密码子X。应用高维空间拓扑分析的方法,对线粒体遗传密码和基因组遗传密码的6维编码空间进行对称性分析,得到如下结果:(1)线粒体遗传密码的起始密码子是2个而不是1个。(2)线粒体遗传密码的终止密码子是4个而不是3个。(3)线粒体遗传密码空间只有2、4、6三种偶数简并度而没1、3两种奇数简并度,表明其对称度较高。(4)线粒体遗传密码空间除丝氨酸S分成两个平行的子空间之外,终止密码子X亦分成两个平行的子空间,表明其连通度较低。(5)线粒体遗传密码一基因组遗传密码相比,共有3个简并平面出现变异,即:1001λλ(M和I),011λ1λ(W和X),以及1011λλ(S和X或S和R)。(6)基因组遗传密码的1、3两种奇数简并度可能来源于线粒体遗传密码的1001λλ平面和011λ1λ平面的对称性破缺。对线粒体遗传密码变异的生物学意义及遗传密码的起源进行了分析和讨论。  相似文献   

3.
本文根据复眼透镜光学信息编译码的技术原理,实现了对二维图像进行分解编码记录以及综合译码再现.一幅m×n个目标单元的二维图像,通过1×k阵列的复眼透镜,得到(1×k)(m×n)个像元.经过一个特制的掩模板,得到一幅随机分解编码像,并根据透镜的物、像共轭原理,综合再现了原始图像.进而还实现了同时记录多幅二维图像信息的互补编码像,以及将互补编码像分离重现了每一幅原始目标图像.此互补编码像携带了更大的信息量,同时也大大提高了保密性能.  相似文献   

4.
由于遗传密码子的简并性特征,大多氨基酸由多于一种密码子编码.在蛋白质编码过程中,同义密码子间的使用有着较显著的偏差,即同义密码于使用频率不等.应用CUSP软件对数据集H3N2和MHC进行同义密码子使用偏性的分析,然后基于同义密码子的使用偏性建立新的密码子置换模型,并在此模型的基础上分析物种的正向选择性.分析结果表明新的密码子置换模型能更好地拟合数据,由此可得到更加可靠的参数估计值.  相似文献   

5.
遗传密码是决定蛋白质中氨基酸顺序的核苷酸顺序,由三个连续的核苷酸组成的密码子所构成。本文通过遗传密码表,对遗传密码所具有的几个特性作了介绍。  相似文献   

6.
科技文摘     
遗传密码不是所有生物共通的吗? 遗传密码在所有生物中都是相同的这一点已成为常识,也是分子生物学研究成果之一。但最近据说在线粒体的DNA中发现了三个与一般不同的密码,引起了不小的反响。线粒体中的翻译与细胞质中的蛋白质合成可以完全独立地进行。线粒体的DNA序列中第一个确定的是编码酵母ATP ase的第9个亚基的部位。这个密码子的第三个  相似文献   

7.
拟南芥基因密码子偏爱性分析   总被引:22,自引:0,他引:22  
密码子偏爱性对外源基因的表达强度有一定影响,特别是编码蛋白质N端7~8个氨基酸残基的密码子.通过对拟南芥染色体中26 827个蛋白质对应的基因密码子进行分析,得到了编码氨基酸的61种密码子在拟南芥中的使用频率,并与大肠杆菌和哺乳动物进行了比较,结果表明三者间的密码子偏爱性有较大差异.这一分析结果对于动物基因在植物中的表达,及植物基因在微生物中的表达具有一定指导意义.同时提供了一种直接以XML文档为数据源解析巨型XML格式染色体数据的方法.  相似文献   

8.
遗传密码子的设定表现出令人困惑的多态性特点 :不同氨基酸拥有的密码子的数目 ,除 5个外 ,从 1个到 6个都有 .这种特点显示出密码子无论在翻译行为还是进化轨迹上 ,都存在诸多的异质性 .因此 ,简并性一词的收敛含义 ,并不能表征这种多态性的进化内涵 .没有同义密码子的AUG(Met)和UGG (Trp)并无简并现象 .其余的密码子则可分为两大类 :一类是 ,4个同义密码子为 1组 ,具有相同的第 1、2位碱基 ,并遵循“3中读 2”的读出规则 .同组的 4个同义密码子 ,不过是来自同一个双字母原始密码子 (XYN)的孑遗物 ,从这个意义上讲 ,也不宜视为简并现象 ;另一类则主要是 ,2个同义密码子为一组 ,并遵循“3中读 3”读出规则 .它们是由编码 2个氨基酸的双义原始密码子 ,第 3位的未定碱基N进一步设定形成 .至于有 6个同义密码子的 ,特别令人困感不解的组别 ,实际上是 4 + 2个 ,这启示它们可能源于上述两大类 .遗传密码子多态性的起源 ,可能始于最初阶段 ,氨基酸同某类寡核苷酸的起始二联体的相互作用 ,而完成于所有的双义原始密码子的第 3位碱基的分化 .这种进化轨迹被传统的简并性一词所模糊 ,并导致鉴定各有关理论可信性的坚实依据和令不同观点取得共识的基础被掩盖起来 .这可能就是在遗传密码子起源领域里 ,长期存在着众  相似文献   

9.
肖景发  于军 《中国科学C辑》2009,39(8):717-726
根据DNA核苷酸组分的动态变化规律将遗传密码的传统排列按密码子对GC和嘌呤含量的敏感性进行了重排.新密码表可划分为2个半区(或1/2区)和4个四分区(或1/4区).就原核生物基因组而言,当GC含量增加时,物种蛋白质组所含的氨基酸倾向于使用GC富集区和嘌呤不敏感半区所编码的氨基酸,它们均使用四重简并密码,对DNA序列的突变具有相对鲁棒性(Robustness).当GC含量降低时,大多数密码子处于AU富集区和嘌呤敏感半区,这个区域编码的氨基酸具有物理化学性质的多样性.因为当密码子第三位核苷酸(CP3)在嘌呤和嘧啶之间发生转换时,密码子所编码的氨基酸也倾向于发生变化.关于遗传密码的进化存在多种假说,包括凝固事件假说、共进化假说和立体化学假说等,每种假说均试图解释遗传密码所表现出来的某些化学和生物学规律.基于遗传密码的物理化学性质、基因组变异的规律和相关的生物学假说,本研究提出了遗传密码分步进化假说(The Stepwise Evolution Hypothesis for the Genetic Code).在人们推断的最原始的RNA世界里,原初(Primordial)遗传密码从只能识别嘌呤和嘧啶开始,编码一个或两个简单而功能明确的氨基酸.由于胞嘧啶C的化学不稳定性,最初形成的遗传密码应该仅仅由腺嘌呤A和尿嘧啶U来编码,却可得到一组7个多元化的氨基酸.随着生命复杂性的增加,鸟嘌呤G从主载操作信号的功能中释放出来,再伴随着C的引入,使遗传密码逐步扩展到12,15和20个氨基酸,最终完成全部进化步骤.遗传密码的进化过程同时也伴随以蛋白质为主体的分子机制和细胞过程的进化,包括氨酰tRNA合成酶(AARS)从初始翻译机器上的脱离、DNA作为信息载体而取代RNA以及AARS和tRNA共进化等基本过程.分子机制和细胞过程是生命的基本组成元件,它们不但自己不断地趋于完善,也促使生命体走?  相似文献   

10.
密码子     
遗传学上把决定氨基酸的不同碱基排列顺序,叫做遗传密码。而密码子是指mRNA上决定一个氨基酸的3个相邻的碱基,即三联体密码予。1密码子的发现和破译最早提出遗传密码这一名词的是量子力学奠基人之一,奥地利物理学家施勒丁格(E.Schrodinser,1944)。第一个提出遗传密码具体设想的是美国物理学家G.Gamov,他通过推算提出了三联体密码子的概念,并且进一步推论一种氨基酸可能不止有一个密码子。克里克(Crick)、布伦纳(S.Brenner)等人以T。噬菌体作为主要研究材料,证实了三联体密码子决定20种不同的氨基酸。第一个用实验破译…  相似文献   

11.
遗传密码和DNA序列的高维空间数字编码   总被引:13,自引:7,他引:6  
二进制数字化编码是信息科学最基本的编码方式。用0(00)、1(01)、2(10)和3(11)4个数码对4种碱基(C、T、A、G)进行二进制数字编码,共有24种可能的编码组合,其中8种满足碱基到补法则,它们是拓扑等价的。按碱基分子量大小排列的编码格式:0123/CTAG是最理想的编码格式。用二进制数对DNA的字符序列进行编码,有以下优点:1)压缩信息冗余度,提高编码效率;2)可以对碱基的结构、功能基  相似文献   

12.
13.
A model using suitable mathematical operators in the crystal basis model of the genetic code is presented. This model retains a requirement for stability of the genetic code against misreading or translation errors. The main features (including number of encoded amino-acids, nucleotide content, and synonymous codons multiplet dimension) are described for mitochondrial and eukaryotic genetic codes.  相似文献   

14.
The discovery of diverse codon reassignment events has demonstrated that the canonical genetic code is not universal. Studying coding reassignment at the molecular level is critical for understanding genetic code evolution, and provides clues to genetic code manipulation in synthetic biology. Here we report a novel reassignment event in the mitochondria of Ashbya (Eremothecium) gossypii, a filamentous-growing plant pathogen related to yeast (Saccharomycetaceae). Bioinformatics studies of conserved positions in mitochondrial DNA-encoded proteins suggest that CUU and CUA codons correspond to alanine in A. gossypii, instead of leucine in the standard code or threonine in yeast mitochondria. Reassignment of CUA to Ala was confirmed at the protein level by mass spectrometry. We further demonstrate that a predicted is transcribed and accurately processed in vivo, and is responsible for Ala reassignment. Enzymatic studies reveal that is efficiently recognized by A. gossypii mitochondrial alanyl-tRNA synthetase (AgAlaRS). AlaRS typically recognizes the G3:U70 base pair of tRNAAla; a G3A change in Ashbya abolishes its recognition by AgAlaRS. Conversely, an A3G mutation in Saccharomyces cerevisiae confers tRNA recognition by AgAlaRS. Our work highlights the dynamic feature of natural genetic codes in mitochondria, and the relative simplicity by which tRNA identity may be switched.  相似文献   

15.
In species with variant genetic codes, one or two stop codons encode amino acid residues and are not recognized by the intrinsic class I translation termination factor (eRF1). Ciliata include a large number of species with variant genetic codes. The stop codon specificity of the Blepharisma japonicum translation termination factor eRF1 was determined in an in vitro eukaryotic translation system and in an in vivo assay (a dual reporter system). It was shown that eRF1 of B. japonicum retained specificity to all three stop codons, although the efficiency of peptydyl-tRNA hydrolysis in the presence of UGA was reduced in the in vitro assay. Since Heterotrichea (including B. japonicum) are the earliest diverged lineage in the phylogenetic tree of ciliates, B. japonicum probably possesses a universal genetic code similar to the putative ciliate ancestor group.  相似文献   

16.
Herein two genetic codes from which the primeval RNA code could have originated the standard genetic code (SGC) are derived. One of them, called extended RNA code type I, consists of all codons of the type RNY (purine-any base-pyrimidine) plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. In order to test if putative nucleotide sequences in the RNA World and in both extended RNA codes, share the same scaling and statistical properties to those encountered in current prokaryotes, we used the genomes of four Eubacteria and three Archaeas. For each prokaryote, we obtained their respective genomes obeying the RNA code or the extended RNA codes types I and II. In each case, we estimated the scaling properties of triplet sequences via a renormalization group approach, and we calculated the frequency distributions of distances for each codon. Remarkably, the scaling properties of the distance series of some codons from the RNA code and most codons from both extended RNA codes turned out to be identical or very close to the scaling properties of codons of the SGC. To test for the robustness of these results, we show, via computer simulation experiments, that random mutations of current genomes, at the rates of 10−10 per site per year during three billions of years, were not enough for destroying the observed patterns. Therefore, we conclude that most current prokaryotes may still contain relics of the primeval RNA World and that both extended RNA codes may well represent two plausible evolutionary paths between the RNA code and the current SGC.  相似文献   

17.
While our understanding of gene-based biology has greatly improved, it is clear that the function of the genome and most diseases cannot be fully explained by genes and other regulatory elements. Genes and the genome represent distinct levels of genetic organization with their own coding systems; Genes code parts like protein and RNA, but the genome codes the structure of genetic networks, which are defined by the whole set of genes, chromosomes and their topological interactions within a cell. Accordingly, the genetic code of DNA offers limited understanding of genome functions. In this perspective, we introduce the genome theory which calls for the departure of gene-centric genomic research. To make this transition for the next phase of genomic research, it is essential to acknowledge the importance of new genome-based biological concepts and to establish new technology platforms to decode the genome beyond sequencing.  相似文献   

18.
Summary We lay new foundations to the hypothesis that the genetic code is adapted to evolutionary retention of information in the antisense strands of natural DNA/RNA sequences. In particular, we show that the genetic code exhibits, beyond the neutral replacement patterns of amino acid substitutions, optimal properties by favoring simultaneous evolution of proteins encoded in DNA/RNA sense-antisense strands. This is borne out in the sense-antisense transformations of the codons of every amino acid which target amino acids physicochemically similar to each other. Moreover, silent mutations in the sense strand generate conservative ones in its antisense counterpart and vice versa. Coevolution of proteins coded by complementary strands is shown to be a definite possibility, a result which does not depend on any physical interaction between the coevolving proteins. Likewise, the degree to which the present genetic code is dedicated to evolutionary sense-antisense tolerance is demonstrated by comparison with many randomized codes. Double-strand coding is quantified from an information-theoretical point of view.  相似文献   

19.
It is known that different codons may be unified into larger groups related to the hierarchical structure, approximate hidden symmetries, and evolutionary origin of the universal genetic code. Using a simplified evolutionary motivated two-letter version of genetic code, the general principles of the most stable coding are discussed. By the complete enumeration in such a reduced code it is strictly proved that the maximum stability with respect to point mutations and shifts in the reading frame needs the fixation of the middle letters within codons in groups with different physico-chemical properties, thus, explaining a key feature of the universal genetic code. The translational stability of the genetic code is studied by the mapping of code onto de Bruijn graph providing both the compact visual representation of mutual relationships between different codons as well as between codons and protein coding DNA sequence and a powerful tool for the investigation of stability of protein coding. Then, the results are extended to four-letter codes. As is shown, the universal genetic code obeys mainly the principles of optimal coding. These results demonstrate the hierarchical character of optimization of universal genetic code with strictly optimal coding being evolved at the earliest stages of molecular evolution. Finally, the universal genetic code is compared with the other natural variants of genetic codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号