首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions occurring between malignant cells and the stromal microenvironment heavily influence tumor progression. We investigated whether this cross-talk affects some molecular and functional aspects specifically correlated with the invasive phenotype of breast tumor cells (i.e. adhesion molecule expression, membrane fluidity, migration) by co-culturing mammary cancer cells exhibiting different degrees of metastatic potential (MDA-MB-231>MCF-7) with fibroblasts isolated from breast healthy skin (normal fibroblasts, NFs) or from breast tumor stroma (cancer-associated fibroblasts, CAFs) in 2D or 3D (nodules) cultures. Confocal immunofluorescence analysis of the epithelial adhesion molecule E-cadherin on frozen nodule sections demonstrated that NFs and CAFs, respectively, induced or inhibited its expression in MCF-7 cells. An increase in the mesenchymal adhesion protein N-cadherin was observed in CAFs, but not in NFs, as a result of the interaction with both kinds of cancer cells. CAFs, in turn, promoted N-cadherin up-regulation in MDA-MB-231 cells and its de novo expression in MCF-7 cells. Beyond promotion of “cadherin switching”, another sign of the CAF-triggered epithelial-mesenchymal transition (EMT) was the induction of vimentin expression in MCF-7 cells. Plasma membrane labeling of monolayer cultures with the fluorescent probe Laurdan showed an enhancement of the membrane fluidity in cancer cells co-cultured with NFs or CAFs. An increase in lipid packing density of fibroblast membranes was promoted by MCF-7 cells. Time-lapsed cell tracking analysis of mammary cancer cells co-cultured with NFs or CAFs revealed an enhancement of tumor cell migration velocity, even with a marked increase in the directness induced by CAFs.Our results demonstrate a reciprocal influence of mammary cancer and fibroblasts on various adhesiveness/invasiveness features. Notably, CAFs'' ability to promote EMT, reduction of cell adhesion, increase in membrane fluidity, and migration velocity and directness in mammary cancer cells can be viewed as an overall progression- and invasion-promoting effect.  相似文献   

2.
3.
Induction of epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) characteristics underlie the development of metastasis, chemoresistance, and tumor recurrence in breast cancer. Downregulation of cytokeratin 18 (CK18) is a critical molecular event of EMT; however, its importance in the induction of EMT and CSC features has not been defined to date. This study aimed to investigate the biological significance and underlying molecular mechanisms of CK18 in inducing EMT phenotype and stemness properties of breast cancer cells. Three breast cancer cell lines (i.e., non-metastatic MCF-7, highly metastatic MDA-MB-231, and mitoxantrone (MX)-selected resistant MCF-7/MX cells) and two CK18-knockdown stable cell clones (MCF-7-shCK18-7D and 3C) were used to determine the association between CK18 and EMT and stemness. CK18 expression was extremely low in highly metastatic, resistant, and transforming growth factor (TGF)-β1/tumor necrosis factor (TNF)-α-treated breast cancer cells with mesenchymal phenotype and increased expression of CSC markers. Depletion of CK18 promoted partial EMT and the acquisition of stemness properties in breast cancer MCF-7 cells. Mechanistically, CK18 interference in MCF-7 cells activated the Wnt/β-catenin signaling, resulting in the up-regulation of epithelial cell adhesion molecule (EpCAM). Consistently, the stemness properties and metastasis can be attenuated by further knockdown of EpCAM in CK18-depleted cells. In conclusion, downregulation of CK18 promotes partial EMT and enhances breast cancer stemness by increasing EpCAM expression partly via the Wnt/β-catenin pathway. These findings indicate that CK18 may serve as a potential treatment target for advanced breast cancer.  相似文献   

4.
5.
The invasive behaviour of 8 lymphoma cell lines were tested by an in vitro monolayer invasion assay. The metastatic cell lines (TAM 4D1.2, DCH10Sp, TAM 4D6.2, E4 and BWLi) were more invasive than their non-metastatic counterparts (TAS 5C4, BWO and DCH 10). There was a positive correlation between their invasiveness and the PGE1- and forskolin stimulated cellular cAMP levels. Invasiveness and basal cAMP levels could not be correlated. Pretreatment with pertussis toxin (50 ng/ml) for 24 hours provoked did not significantly affect the basal and PGE1-stimulated cAMP levels in all cells. Yet, the toxin catalysed the ADP-ribosylation of 40 kDa components in all cells and provoked a significant increase in the invasiveness of non-metastatic cell lines and a decrease in the invasiveness of metastatic cell lines. These data suggest that the invasiveness of T-lymphoma cell lines might be controlled by a complex interplay between different signal transducing pathways in the membrane, rather than by the intracellular level of cAMP.  相似文献   

6.
This study aimed to investigate the role of fatty acid synthase (FASN) in the epithelial-mesenchymal transition (EMT) of breast cancer cells. MCF-7 cells and MCF-7 cells overexpressing mitogen-activated protein kinase 5 (MCF-7-MEK5) were used in this study. MCF-7-MEK5 cells showed stable EMT characterized by increased vimentin and decreased E-cadherin expression. An In vivo animal model was established using the orthotopic injection of MCF-7 or MCF-7-MEK5 cells. Real-time quantitative PCR and western blotting were used to detect the expression levels of FASN and its downstream proteins liver fatty acid-binding protein (L-FABP) and VEGF/VEGFR-2 in both in vitro and in vivo models (nude mouse tumor tissues). In MCF-7-MEK5 cells, significantly increased expression of FASN was associated with increased levels of L-FABP and VEGF/VEGFR-2. Cerulenin inhibited MCF-7-MEK5 cell migration and EMT, and reduced FASN expression and down-stream proteins L-FABP, VEGF, and VEGFR-2. MCF-7-MEK5 cells showed higher sensitivity to Cerulenin than MCF-7 cells. Immunofluorescence revealed an increase of co-localization of FASN with VEGF on the cell membrane and with L-FABP within MCF-7-MEK5 cells. Immunohistochemistry further showed that increased percentage of FASN-positive cells in the tumor tissue was associated with increased percentages of L-FABP- and VEGF-positive cells and the Cerulenin treatment could reverse the effect. Altogether, our results suggest that FASN is essential to EMT possibly through regulating L-FABP, VEGF and VEGFR-2. This study provides a theoretical basis and potential strategy for effective suppression of malignant cells with EMT.  相似文献   

7.
The conserved polarity proteins Par6 and aPKC regulate cell polarization processes. However, increasing evidence also suggests that they play a role in oncogenic progression. During tumor progression, epithelial to mesenchymal transition (EMT) delineates an evolutionary conserved process that converts stationary epithelial cells into mesenchymal cells, which have an acquired ability for independent migration and invasion. In addition to signaling pathways that alter genetic programes that trigger the loss of cell-cell adhesion, alternative pathways can alter cell plasticity to regulate cell-cell cohesion and increase invasive potential. One such pathway involves TGFβ-induced phosphorylation of Par6. In epithelial cells, Par6 phosphorylation results in the dissolution of junctional complexes, cytoskeletal remodelling, and increased metastatic potential. Recently, we found that aPKC can also phosphorylate Par6 to drive EMT and increase the migratory potential of non-small cell lung cancer cells. This result has implications with respect to homeostatic and developmental processes involving polarization, and also with respect to cancer progression—particularly since aPKC has been reported to be an oncogenic regulator in various tumor cells.  相似文献   

8.
Overexpression of breast cancer resistance protein (BCRP) plays a crucial role in the acquired multidrug resistance (MDR) in breast cancer. The elucidation of molecular events that confer BCRP-mediated MDR is of major therapeutic importance in breast cancer. Epithelial cell adhesion molecule (EpCAM) has been implicated in tumor progression and drug resistance in various types of cancers, including breast cancer. However, the role of EpCAM in BCRP-mediated MDR in breast cancer remains unknown. In the present study, we revealed that EpCAM expression was upregulated in BCRP-overexpressing breast cancer MCF-7/MX cells, and EpCAM knockdown using siRNA reduced BCRP expression and increased the sensitivity of MCF-7/MX cells to mitoxantrone (MX). The epithelial–mesenchymal transition (EMT) promoted BCRP-mediated MDR in breast cancer cells, and EpCAM knockdown partially suppressed EMT progression in MCF-7/MX cells. In addition, Wnt/β-catenin signaling was activated in MCF-7/MX cells, and the inhibition of this signaling attenuated EpCAM and BCRP expression and partially reversed EMT. Together, this study illustrates that EpCAM upregulation by Wnt/β-catenin signaling induces partial EMT to promote BCRP-mediated MDR resistance in breast cancer cells. EpCAM may be a potential therapeutic target for overcoming BCRP-mediated resistance in human breast cancer.  相似文献   

9.
Epithelial-to-mesenchymal transition (EMT) is the process in which epithelial cells lose cell polarity and cell adhesion with surrounding cells to obtain migratory and invasive abilities. On the other hand, the expression of connexin is decreased or lacked in the many types of tumor cells. This study examined the effect of gap junctional intercellular communication (GJIC) on EMT induced by the transforming growth factor-β1 (TGF-β1). To investigate the effect of GJIC on EMT in U2OS cells, smooth muscle 22-α (sm22α) promoter-driven luciferase reporter gene was introduced into Cx43-expressing cells (U2OS-Luc Cx43) and into the control parental cell line (U2OS-Luc). TGF-β1 induced the expression of EMT markers and the sm22α promoter activity of U2OS-Luc cells. Sm22α promoter activity of U2OS cells was neither dependent on the expression of Cx43 nor on the establishment of GJIC among U2OS cells. Furthermore, we found that the homocellular communication among tumor cells did not affected the tumor cell growth and migration. However, we revealed that tumor cell density was an important factor for tumor cells to acquire metastatic phenotype. Interestingly, the co-culture of U2OS cells with osteoblasts revealed that sm22α promoter activity was inhibited only by the GJIC established between these two cell types. These results suggest that normal osteoblast cells negatively regulate the EMT of tumor cells, at least in part. Thus, Cx43-mediated GJIC may have anti-metastatic activity in tumor cells. Our findings provide a new insight into the role of GJIC in cancer progression and metastasis and identify potential therapeutic targets for the treatment of cancer.  相似文献   

10.
Haga A  Funasaka T  Deyashiki Y  Raz A 《FEBS letters》2008,582(13):1877-1882
The autocrine motility factor (AMF) is a multifunctional protein that is involved in tumor progression including enhanced invasiveness via induction of matrix metalloproteinase-3 (MMP3). The increase in MMP3 was found in an AMF-high production tumor cell line, and c-Jun, c-Fos and mitogen-activated protein kinases (MAPKs) were also highly phosphorylated compared with the parent line. AMF stimulation induced the rapid phosphorylation of the cellular MAPK cascade and MMP3 secretion, which was blocked using a specific MAPK inhibitor. Results of this study suggest that AMF stimulation stimulates MMP3 expression via a MAPK signaling pathway.  相似文献   

11.

Background

Autocrine motility factor/phosphoglucose isomerase (AMF/PGI) is the extracellular ligand for the gp78/AMFR receptor overexpressed in a variety of human cancers. We showed previously that raft-dependent internalization of AMF/PGI is elevated in metastatic MDA-435 cells, but not metastatic, caveolin-1-expressing MDA-231 cells, relative to non-metastatic MCF7 and dysplastic MCF10A cells suggesting that it might represent a tumor cell-specific endocytic pathway.

Methodology/Principal Findings

Similarly, using flow cytometry, we demonstrate that raft-dependent endocytosis of AMF/PGI is increased in metastatic HT29 cancer cells expressing low levels of caveolin-1 relative to metastatic, caveolin-1-expressing, HCT116 colon cells and non-metastatic Caco-2 cells. Therefore, we exploited the raft-dependent internalization of AMF/PGI as a potential tumor-cell specific targeting mechanism. We synthesized an AMF/PGI-paclitaxel conjugate and found it to be as efficient as free paclitaxel in inducing cytotoxicity and apoptosis in tumor cells that readily internalize AMF/PGI compared to tumor cells that poorly internalize AMF/PGI. Murine K1735-M1 and B16-F1 melanoma cells internalize FITC-conjugated AMF/PGI and are acutely sensitive to AMF/PGI-paclitaxel mediated cytotoxicity in vitro. Moreover, following in vivo intratumoral injection, FITC-conjugated AMF/PGI is internalized in K1735-M1 tumors. Intratumoral injection of AMF/PGI-paclitaxel induced significantly higher tumor regression compared to free paclitaxel, even in B16-F1 cells, known to be resistant to taxol treatment. Treatment with AMF/PGI-paclitaxel significantly prolonged the median survival time of tumor bearing mice. Free AMF/PGI exhibited a pro-survival role, reducing the cytotoxic effect of both AMF/PGI-paclitaxel and free paclitaxel suggesting that AMF/PGI-paclitaxel targets a pathway associated with resistance to chemotherapeutic agents. AMF/PGI-FITC uptake by normal murine spleen and thymus cells was negligible both in vitro and following intravenous injection in vivo where AMF/PGI-FITC was selectively internalized by subcutaneous B16-F1 tumor cells.

Conclusions/Significance

The raft-dependent endocytosis of AMF/PGI may therefore represent a tumor cell specific endocytic pathway of potential value for drug delivery to tumor cells.  相似文献   

12.
Histone deacetylase 6 (HDAC6) belongs to the family of class IIb HDACs and predominantly deacetylates non-histone proteins in the cytoplasm via the C-terminal deacetylase domain of its two tandem deacetylase domains. HDAC6 modulates fundamental cellular processes via deacetylation of α-tubulin, cortactin, molecular chaperones, and other peptides. Our previous study indicates that HDAC6 mediates TGF-β1-induced epithelial-mesenchymal transition (EMT) in A549 cells. In the current study, we identify a novel splicing variant of human HDAC6, hHDAC6p114. The hHDAC6p114 mRNA arises from incomplete splicing and encodes a truncated isoform of the hHDAC6p114 protein of 114 kDa when compared to the major isoform hHDAC6p131. The hHDAC6p114 protein lacks the first 152 amino acids from N-terminus in the hHDAC6p131 protein, which harbors a nuclear export signal peptide and 76 amino acids of the N-terminal deacetylase domain. hHDAC6p114 is intact in its deacetylase activity against α-tubulin. The expression hHDAC6p114 is elevated in a MCF-7 derivative that exhibits an EMT-like phenotype. Moreover, hHDAC6p114 is required for TGF-β1-activated gene expression associated with EMT in A549 cells. Taken together, our results implicate that expression and function of hHDAC6p114 is differentially regulated when compared to hHDAC6p131.  相似文献   

13.
目的通过TGF-β1诱导乳腺癌MCF-7发生上皮-间质转化(epithelial-mesenchymal transition,EMT)后检测锌指转录因子Snail表达的改变,探讨Snail在EMT及乳腺癌发生发展中的作用。方法常规培养乳腺癌细胞株MCF-7后,用TGF-β1诱导其发生EMT,用Transwell侵袭小室法进行细胞体外侵袭能力检测;用免疫组织化学方法及免疫荧光检测E-cadherin、Vi mentin、Snail的表达;用real ti me PCR检测E-cadherin、Vi mentin、Snail mRNA的表达。结果TGF-β1处理72h后的MCF-7细胞穿透能力明显增强。E-cadherin蛋白及mRNA表达减少,Vi mentin、Snail蛋白及mRNA表达增加。结论E-cadherin、Vi mentin是细胞发生EMT的重要生物学标志,Snail可能在转录水平上调控E-cadherin、Vi mentin蛋白的表达,Snail在EMT和乳腺癌的发生发展中起着重要的作用。  相似文献   

14.
Human growth hormone (hGH) plays critical roles in pubertal mammary gland growth, development, and sexual maturation. Accumulated studies have reported that autocrine/paracrine hGH is an orthotopically expressed oncoprotein that promotes normal mammary epithelial cell oncogenic transformation. Autocrine/paracrine hGH has also been reported to promote mammary epithelial cell epithelial-mesenchymal transition (EMT) and invasion. However, the underlying mechanism remains largely obscure. MicroRNAs (miRNAs) are reported to be involved in regulation of multiple cellular functions of cancer. To determine whether autocrine/paracrine hGH promotes EMT and invasion through modulation of miRNA expression, we performed microarray profiling using MCF-7 cells stably expressing wild type or a translation-deficient hGH gene and identified miR-96-182-183 as an autocrine/paracrine hGH-regulated miRNA cluster. Forced expression of miR-96-182-183 conferred on epithelioid MCF-7 cells a mesenchymal phenotype and promoted invasive behavior in vitro and dissemination in vivo. Moreover, we observed that miR-96-182-183 promoted EMT and invasion by directly and simultaneously suppressing BRMS1L (breast cancer metastasis suppressor 1-like) gene expression. miR-96 and miR-182 also targeted GHR, providing a potential negative feedback loop in the hGH-GHR signaling pathway. We further demonstrated that autocrine/paracrine hGH stimulated miR-96-182-183 expression and facilitated EMT and invasion via STAT3 and STAT5 signaling. Consistent with elevated expression of autocrine/paracrine hGH in metastatic breast cancer tissue, miR-96-182-183 expression was also remarkably enhanced. Hence, we delineate the roles of the miRNA-96-182-183 cluster and elucidate a novel hGH-GHR-STAT3/STAT5-miR-96-182-183-BRMS1L-ZEB1/E47-EMT/invasion axis, which provides further understanding of the mechanism of autocrine/paracrine hGH-stimulated EMT and invasion in breast cancer.  相似文献   

15.
16.
Aberrant expression of the guanine nucleotide exchange factor Tiam1 is implicated in the invasive phenotype of many cancers. However, its involvement in thyroid carcinoma and downstream molecular events remains largely undefined. Here, we examined the effects of Tiam1 on the invasiveness and metastasis of thyroid carcinoma in vitro and in vivo and explored the underlying mechanisms by investigating the regulation of Tiam1 expression and the downstream pathways affected. Our results showed that Tiam1 knockdown inhibited the migratory and invasive capacity of thyroid cancer cells, suppressed epithelial-mesenchymal transition (EMT), and inhibited Wnt/β-catenin signaling in vitro. Moreover, Tiam1 knockdown suppressed liver metastasis development in vivo. The effects of Tiam1 on metastasis and EMT mediated by the Wnt/β-catenin pathway were reversed by Rac1 silencing, suggesting that the prometastatic effect of Tiam1 is mediated by the activation of Rac1. These results indicate that Tiam1 may be a prognostic factor and potential therapeutic target for the treatment of thyroid cancers.  相似文献   

17.
18.
BackgroundBreast cancer is the major cause of cancer-related deaths in females world-wide. Doxorubicin-based therapy has limited efficacy in breast cancer due to drug resistance, which has been shown to be associated with the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms linking the EMT and drug resistance in breast cancer cells remain unclear. Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is associated with cellular proliferation and differentiation; however, its role in breast cancer progression is controversial.MethodsWe used cell viability assays, Western blotting and immunofluorescent staining, combined with siRNA interference, to evaluate chemoresistance and the EMT in MCF-7 and adriamycin-resistant MCF-7/ADR breast cancer cells, and investigate the underlying mechanisms.ResultsKnockdown of DUSP4 significantly increased the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin, and MCF-7/ADR cells which expressed high levels of DUSP4 had a mesenchymal phenotype. Furthermore, knockdown of DUSP4 reversed the EMT in MCF-7/ADR cells, as demonstrated by upregulation of epithelial biomarkers and downregulation of mesenchymal biomarkers, and also increased the chemosensitivity of MCF-7/ADR cells to doxorubicin.ConclusionsDUSP4 might represent a potential drug target for inhibiting drug resistance and regulating the process of the EMT during the treatment of breast cancer.  相似文献   

19.
Microenvironmental factors affect different aspects of tumor cell biology, including cell survival, invasion, and metastasis. Here, we report that hepatocyte growth factor and hypoxia may contribute to breast carcinoma cell invasiveness by inducing the chemokine receptor CXCR4. Hepatocyte growth factor enhanced CXCR4 mRNA and protein expression exclusively in MCF-7 (low invasive) carcinoma cells, while in response to hypoxia, CXCR4 induction was observed in both MCF-7 and MDA-MB 231 (highly invasive) carcinoma cells. The receptor induction had a functional role in cancer cells, as demonstrated by the fact that hepatocyte growth factor pretreatment promoted MCF-7 cell migration toward the CXCR4-specific ligand CXCL12. Extracellular signal-regulated protein kinase 1/2 (ERK1/2) and phosphoinositide-3-kinase (PI3K) transduction pathways seemed to be differently implicated in the early induction of CXCR4 by hepatocyte growth factor or hypoxia in the two breast carcinoma cells examined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号