首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abrupt cessation of flow representing the acute loss of shear stress (simulated ischemia) to flow-adapted pulmonary microvascular endothelial cells (PMVEC) leads to reactive oxygen species (ROS) generation that signals for EC proliferation. We evaluated the role of caveolin-1 on this cellular response with mouse PMVEC that were preconditioned for 72 h to laminar flow at 5 dyn/cm(2) followed by stop of flow ("ischemia"). Preconditioning resulted in a 2.7-fold increase in cellular expression of K(ATP) (K(IR) 6.2) channels but no change in expression level of caveolin-1, gp91(phox), or MAP kinases. The initial response to ischemia in wild type cells was cell membrane depolarization that was abolished by gene targeting of K(IR) 6.2. The subsequent response was increased ROS production associated with activation of NADPH oxidase (NOX2) and then phosphorylation of MAP kinases (Erk, JNK). After 24 h of ischemia in wild type cells, the cell proliferation index increased 2.5 fold and the % of cells in S+G(2)/M phases increased 6-fold. This signaling cascade (cell membrane depolarization, ROS production, MAP kinase activation and cell proliferation) was abrogated in caveolin-1 null PMVEC or by treatment of wild type cells with filipin. These studies indicate that caveolin-1 functions as a shear sensor in flow-adapted EC resulting in ROS-mediated cell signaling and endothelial cell proliferation following the abrupt reduction in flow.  相似文献   

2.
Previous studies have shown endothelial cell membrane depolarization and generation of reactive oxygen species (ROS) in endothelial cells with abrupt reduction in shear stress (ischemia). This study evaluated the role of ATP-sensitive potassium (K(ATP)) channels and NADPH oxidase in the ischemic response by using Kir6.2-/- and gp91(phox)-/- mice. To evaluate ROS generation, we subjected isolated perfused mouse lungs labeled with 2',7'-dichlorodihydrofluorescein (DCF), hydroethidine (HE), or diphenyl-1-pyrenylphosphine (DPPP) to control perfusion followed by global ischemia. In wild-type C57BL/6J mice, imaging of subpleural endothelial cells showed a time-dependent increase in intensity for all three fluorescence probes with ischemia, which was blocked by preperfusion with cromakalim (a K(ATP) channel agonist) or diphenyleneiodonium (DPI, a flavoprotein inhibitor). Endothelial cell fluorescence with bis-oxonol, a membrane potential probe, increased during lung ischemia indicating cell membrane depolarization. The change in membrane potential with ischemia in lungs of gp91(phox)-/- mice was similar to wild type, but ROS generation did not occur. Lungs from Kir6.2-/- showed marked attenuation of the change in both membrane potential and ROS production. Thus membrane depolarization during lung ischemia requires the presence of a K(ATP) channel and is required for activation of NADPH oxidase and endothelial ROS generation.  相似文献   

3.
The pathways of reactive oxygen species (ROS)-mediated apoptosis induction, of Bax activation and the sensitization of tumor cells for TRAIL (TNF-related apoptosis-inducing ligand)-induced apoptosis are still largely elusive. Here, sensitization of melanoma cells for TRAIL by the PI3-kinase inhibitor wortmannin correlated to the activation of mitochondrial apoptosis pathways. Apoptosis was dependent on Bax and abrogated by Bcl-2 overexpression. The synergistic enhancement was explained by Bax activation through wortmannin, which tightly correlated to the characteristic Bax phosphorylation patterns. Thus, wortmannin resulted in early reduction of the Bax-inactivating phosphorylation at serine-184, whereas the Bax-activating phosphorylation at threonine-167 was enhanced. Proving the responsibility of the pathway, comparable effects were obtained with an Akt inhibitor (MK-2206); while suppressed phosphorylation of serine-184 may be attributed to reduced Akt activity itself, the causes of enhanced threonine-167 phosphorylation were addressed here. Characteristically, production of ROS was seen early in response to wortmannin and MK-2206. Providing the link between ROS and Bax, we show that abrogated ROS production by α-tocopherol or by NADPH oxidase 4 (NOX4) siRNA suppressed apoptosis and Bax activation. This correlated with reduced Bax phosphorylation at threonine-167. The data unraveled a mechanism by which NOX4-dependent ROS production controls apoptosis via Bax phosphorylation. The pathway may be considered for proapoptotic, anticancer strategies.  相似文献   

4.
The regulation of endothelial function by insulin is consistently abnormal in insulin-resistant states and diabetes. Protein kinase C (PKC) activation has been reported to inhibit insulin signaling selectively in endothelial cells via the insulin receptor substrate/PI3K/Akt pathway to reduce the activation of endothelial nitric-oxide synthase (eNOS). In this study, it was observed that PKC activation differentially inhibited insulin receptor substrate 1/2 (IRS1/2) signaling of insulin's activation of PI3K/eNOS by decreasing only tyrosine phosphorylation of IRS2. In addition, PKC activation, by general activator and specifically by angiotensin II, increased the phosphorylation of p85/PI3K, which decreases its association with IRS1 and activation. Thr-86 of p85/PI3K was identified to be phosphorylated by PKC activation and confirmed to affect IRS1-mediated activation of Akt/eNOS by insulin and VEGF using a deletion mutant of the Thr-86 region of p85/PI3K. Thus, PKC and angiotensin-induced phosphorylation of Thr-86 of p85/PI3K may partially inhibit the activation of PI3K/eNOS by multiple cytokines and contribute to endothelial dysfunction in metabolic disorders.  相似文献   

5.
We studied the PI3K/Akt signaling pathway modulation and its involvement in the stimulation of ROS 17/2.8 osteoblast-like cell proliferation by extracellular ATP. A dose- and time-dependent increase in Akt-Ser 473 phosphorylation (p-Akt) was observed. p-Akt was increased by ATPγS and UTP, but not by ADPβS. Akt activation was abolished by PI3K inhibitors and reduced by inhibitors of PI-PLC, Src, calmodulin (CaM) but not of CaMK. p-Akt was diminished by cell incubation in a Ca2+-free medium but not by the use of L-type calcium channel blockers. The rise in intracellular Ca2+ induced by ATP was potentiated in the presence of Ro318220, a PKC inhibitor, and attenuated by the TPA, a known activator of PKC. ATP-dependent p-Akt was diminished by TPA and augmented by Ro318220 treatment in a Ca2+-containing but not in a Ca2+-free medium. ATP stimulated the proliferation of both ROS 17/2.8 cells and rat osteoblasts through PI3K/Akt. In the primary osteoblasts, ATP induces alkaline phosphatase activity via PI3K, suggesting that the nucleotide promotes osteoblast differentiation. These results suggest that ATP stimulates osteoblast proliferation through PI-PLC linked-P2Y2 receptors and PI3K/Akt pathway activation involving Ca2+, CaM and Src. PKC seems to regulate Akt activation through Src and the Ca2+ influx/CaM pathway.  相似文献   

6.
We addressed the role of class 1B phosphatidylinositol 3-kinase (PI3K) isoform PI3Kgamma in mediating NADPH oxidase activation and reactive oxidant species (ROS) generation in endothelial cells (ECs) and of PI3Kgamma-mediated oxidant signaling in the mechanism of NF-kappaB activation and intercellular adhesion molecule (ICAM)-1 expression. We used lung microvascular ECs isolated from mice with targeted deletion of the p110gamma catalytic subunit of PI3Kgamma. Tumor necrosis factor (TNF) alpha challenge of wild type ECs caused p110gamma translocation to the plasma membrane and phosphatidylinositol 1,4,5-trisphosphate production coupled to ROS production; however, this response was blocked in p110gamma-/- ECs. ROS production was the result of TNFalpha activation of Ser phosphorylation of NADPH oxidase subunit p47(phox) and its translocation to EC membranes. NADPH oxidase activation failed to occur in p110gamma-/- ECs. Additionally, the TNFalpha-activated NF-kappaB binding to the ICAM-1 promoter, ICAM-1 protein expression, and PMN adhesion to ECs required functional PI3Kgamma. TNFalpha challenge of p110gamma-/- ECs failed to induce phosphorylation of PDK1 and activation of the atypical PKC isoform, PKCzeta. Thus, PI3Kgamma lies upstream of PKCzeta in the endothelium, and its activation is crucial in signaling NADPH oxidase-dependent oxidant production and subsequent NF-kappaB activation and ICAM-1 expression.  相似文献   

7.
8.
Florian M  Lu Y  Angle M  Magder S 《Steroids》2004,69(10):637-645
OBJECTIVES: Acute administration of estrogen results in vasodilation and increased nitric oxide (NO) production. We examined the hypothesis that this is due to activation of Akt/PKB which subsequently increases eNOS activity. METHODS AND RESULTS: Treatment of bovine microvascular and human umbilical endothelial cells (HUVEC) with 17-beta-estradiol (E2) (10(-9) to 10(-5)M) increased phosphorylation of Akt within 1 min and this was followed by phosphorylation of eNOS. These effects were blocked by wortmannin, a PI(3)K inhibitor and the upstream activator of Akt. The estrogen receptor antagonist, ICI 182,780, inhibited eNOS phosphorylation. E2 increased calcium dependent NOS activity and nitrite production and this was inhibited by wortmannin and ICI 182,780. E2 increased the vasodilatory response of aortic rings to acetylcholine and wortmannin blocked the effect. E2 (10(-9)M) dilated cerebral microvascular vessels under conditions of no flow, constant flow and increasing flow and this was blocked by wortmannin. Tamoxifen, a partial estrogen receptor antagonist, also dilated the microvessels. CONCLUSIONS:: E2 increases NO production through an Akt/PKB dependent pathway. This is associated with increased sensitivity to endothelial dependent dilation. In cerebral microvessels, E2 and tamoxifen produce significant dilation at low concentrations with and without acetylcholine induced stimulation of endothelial vasodilation.  相似文献   

9.
Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4) P2 rather than phosphoinositide (3,4,5) P3. Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway.  相似文献   

10.
CD40 has been involved in tumor and inflammatory neoangiogenesis. In this study we determined that stimulation of endothelial CD40 with sCD154 induced resistance to apoptosis and in vitro vessel-like formation by human microvascular endothelial cells (HMEC). These effects were determined to be mediated by CD40-dependent signaling because they were inhibited by a soluble CD40-muIg fusion protein. Moreover, apoptosis of HMEC was associated with an impairment of Akt phosphorylation, which was restored by stimulation with sCD154. The anti-apoptotic effect as well as in vitro vessel-like formation and Akt phosphorylation were inhibited by treatment of HMEC with two unrelated pharmacological inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002. CD40 stimulation induced a rapid increase in Akt enzymatic activity that was not prevented by cycloheximide, an inhibitor of protein synthesis. The enhanced Akt activity induced by stimulation of endothelial CD40 was temporarily correlated with the association of CD40 with TRAF6, c-Cbl, and the p85 subunit of PI3K. Expression of negative-dominant Akt inhibited the activation of endogenous Akt through CD40 stimulation, despite the observation that association of CD40 with TRAF6, c-Cbl, and PI3K was intact. The defective activation of Akt abrogated not only the anti-apoptotic effect of CD40 stimulation but also the proliferative response, the enhanced motility, and the in vitro formation of vessel-like tubular structures by CD40-stimulated HMEC. In conclusion, these results suggest that endothelial CD40, through activation of the PI3K/Akt signaling pathway, regulates cell survival, proliferation, migration, and vessel-like structure formation, all steps considered critical for angiogenesis.  相似文献   

11.
Moderate but not heavy drinking has been found to have a protective effect against cardiovascular morbidity. We investigated the effects of ethanol (EtOH) treatment on the cell survival-promoting phosphatidylinositol 3-kinase (PI3K)/Akt pathway in cultured human umbilical vein endothelial cells (HUVEC). Exposure of cells to 2-20 mm EtOH resulted in rapid (<10 min) induction of Akt phosphorylation that could be prevented by pertussis toxin or the PI3K inhibitors wortmannin and LY294002. Among the downstream effectors of PI3K/Akt, p70S6 kinase, glycogen synthase kinase 3alpha/beta, and IkappaB-alpha were phosphorylated, the latter resulting in 3-fold activation of NF-kappaB. EtOH also activated p44/42 mitogen-activated protein kinase in a PI3K-dependent manner. Low concentrations of EtOH increased endothelial nitric-oxide synthase activity, which could be blocked by transfection of HUVEC with dominant-negative Akt, implicating the PI3K/Akt pathway in this effect. The adenosine A1 receptor antagonist 1,3-dipopylcyclopentylxanthine prevented the phosphorylation of Akt observed in the presence of EtOH, adenosine, or the A1 agonist N(6)-cyclopentyladenosine. Incubation of HUVEC with 50-100 mm EtOH resulted in mitochondrial permeability transition and caspase-3 activation followed by apoptosis, as documented by DNA fragmentation and TUNEL assays. EtOH-induced apoptosis was unaffected by DPCPX and was potentiated by wortmannin or LY294002. We conclude that treatment with low concentrations of EtOH activates the cell survival promoting PI3K/Akt pathway in endothelial cells by an adenosine receptor-dependent mechanism and activation of the proapoptotic caspase pathway by higher concentrations of EtOH via an adenosine-independent mechanism can mask or counteract such effects.  相似文献   

12.
Peroxiredoxin 6 (Prdx6), a bifunctional enzyme with glutathione peroxidase and phospholipase A2 (PLA(2)) activities, participates in the activation of NADPH oxidase 2 (NOX2) in neutrophils, but the mechanism for this effect is not known. We now demonstrate that Prdx6 is required for agonist-induced NOX2 activation in pulmonary microvascular endothelial cells (PMVEC) and that the effect requires the PLA(2) activity of Prdx6. Generation of reactive oxygen species (ROS) in response to angiotensin II (Ang II) or phorbol 12-myristate 13-acetate was markedly reduced in perfused lungs and isolated PMVEC from Prdx6 null mice. Rac1 and p47(phox), cytosolic components of NOX2, translocated to the endothelial cell membrane after Ang II treatment in wild-type but not Prdx6 null PMVEC. MJ33, an inhibitor of Prdx6 PLA(2) activity, blocked agonist-induced PLA(2) activity and ROS generation in PMVEC by >80%, whereas inhibitors of other PLA(2)s were ineffective. Transfection of Prx6 null cells with wild-type and C47S mutant Prdx6, but not with mutants of the PLA(2) active site (S32A, H26A, and D140A), "rescued" Ang II-induced PLA(2) activity and ROS generation. Ang II treatment of wild-type cells resulted in phosphorylation of Prdx6 and its subsequent translocation from the cytosol to the cell membrane. Phosphorylation as well as PLA(2) activity and ROS generation were markedly reduced by the MAPK inhibitor, U0126. Thus, agonist-induced MAPK activation leads to Prdx6 phosphorylation and translocation to the cell membrane, where its PLA(2) activity facilitates assembly of the NOX2 complex and activation of the oxidase.  相似文献   

13.
14.
15.
Endothelial cells in vivo are constantly exposed to shear associated with blood flow and altered shear stress elicits cellular responses (mechanotransduction). This review describes the role of shear sensors and signal transducers in these events. The major focus is the response to removal of shear as occurs when blood flow is compromised (i.e., ischemia). Pulmonary ischemia studied with the isolated murine lung or flow adapted pulmonary microvascular endothelial cells in vitro results in endothelial generation of reactive oxygen species (ROS) and NO. The response requires caveolae and is initiated by endothelial cell depolarization via KATP channel closure followed by activation of NADPH oxidase (NOX2) and NO synthase (eNOS), signaling through MAP kinases, and endothelial cell proliferation. These physiological mediators can promote vasodilation and angiogenesis as compensation for decreased tissue perfusion.  相似文献   

16.
Vascular hyperpermeability associated with retinal vascular leakage is known to occur in patients with diabetes, and contributes to endothelial barrier dysfunction. This study aimed to examine the effect of pigment epithelium-derived factor (PEDF) on advanced glycation end products (AGEs)-induced endothelial cell permeability. Cultured porcine retinal endothelial cell (PREC) was exposed to AGE-modified bovine serum albumin (AGE-BSA) and the endothelial cell permeability was detected by measuring the flux of rhodamine B isothiocyanate (RITC)-dextran across the PREC monolayers. We found that AGE-BSA increased the RITC-dextran flux across a PREC monolayer and PEDF blocked the solute flux induced by AGE-BSA. In order to explore the underlying signaling mechanism of PEDF on the inhibitory effect of AGE-BSA-induced permeability, we demonstrate that PEDF could inhibit the AGE-BSA-induced permeability via phosphatidylinositol 3-kinase (PI3K)/Akt pathway. AGE-BSA also increased the endothelial cell permeability by stimulating the reactive oxygen species (ROS) generation via NADPH oxidase activity and Akt phosphorylation at Ser473. PEDF decreased ROS generation in AGE-BSA-exposed endothelial cells by suppressing the NADPH oxidase activity via down regulating the phosphorylation of p22PHOx at Thr147. This led to blockade of AGE-induction of PI3K/Akt activation in permeability. Furthermore, PEDF inhibited the AGE-BSA-induced permeability by increased expression of tight junction protein zona occludens-1(ZO-1), co-incident with an increase in barrier properties of endothelial monolayer. Together, our results indicate that PEDF could possibly act as potent anti-permeability molecule by targeting the PI3K/Akt signaling pathway by suppressing if NADPH oxidase mediated ROS generation and ZO-1 tight junction protein and it offers potential targets to inhibit the ocular related diseases such as diabetic retinopathy.  相似文献   

17.
Indoleamine 2,3‐dioxygenase (IDO) is the rate‐limiting enzyme in the kynurenine (Kyn) pathway of tryptophan (Trp) metabolism. IDO is immunosuppressive and is induced by inflammation in macrophages and dendritic cells (DCs). Previous studies have shown the serum Kyn/Trp levels in patients with hemolytic anemia to be notably high. In the present study, we demonstrated that hemoglobin (Hb), but not hemin or heme‐free globin (Apo Hb), induced IDO expression in bone marrow‐derived myeloid DCs (BMDCs). Hb induced the phosphorylation and degradation of IκBα. Hb‐induced IDO expression was inhibited by inhibitors of PI3‐kinase (PI3K), PKC and nuclear factor (NF)‐κB. Hb translocated both RelA and p52 from the cytosol to the nucleus and induced the intracellular generation of reactive oxygen species (ROS). Hb‐induced IDO expression was inhibited by anti‐oxidant N‐acetyl‐L ‐cysteine (NAC) or mixtures of SOD and catalase, however, IDO expression was enhanced by 3‐amino‐1,2,4‐triazole, an inhibitor of catalase, suggesting that the generation of ROS such as O, H2O2, and hydroxyl radical is required for the induction of IDO expression. The generation of ROS was inhibited by a PKC inhibitor, and this action was further enhanced by addition of a PI3K inhibitor. Hb induced Akt phosphorylation, which was inhibited by a PI3K inhibitor and enhanced by a PKC inhibitor. These results suggest that the activation of NF‐κB through the PI3K‐PKC‐ROS and PI3K‐Akt pathways is required for the Hb‐induced IDO expression in BMDCs. J. Cell. Biochem. 108: 716–725, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The biological function of NADPH oxidase (NOX) is the generation of reactive oxygen species (ROS). ROS, primarily arising from oxidative cell metabolism, play a major role in both chronological ageing and photoageing. ROS in extrinsic and intrinsic skin ageing may be assumed to induce the expression of matrix metalloproteinases. NADPH oxidase is closely linked with phosphatidylinositol 3‐OH kinase (PI3K) signalling. Protein kinase C (PKC), a downstream molecule of PI3K, is essential for superoxide generation by NADPH oxidase. However, the effect of PTEN and NOX4 in replicative‐aged MMPs expression has not been determined. In this study, we confirmed that inhibition of the PI3K signalling pathway by PTEN gene transfer abolished the NOX‐4 and MMP‐1 expression. Also, NOX‐4 down‐expression of replicative‐aged skin cells abolished the MMP‐1 expression and ROS generation. These results suggest that increase of MMP‐1 expression by replicative‐induced ROS is related to the change in the PTEN and NOX expression.  相似文献   

19.
5-Hydroxytryptamine (5-HT) induces proliferation of cancer cells and vascular cells. In addition to 5-HT production by several cancer cells including gastrointestinal and breast cancer, a significant level of 5-HT is released from activated platelets in the thrombotic environment of tumors, suggesting that inhibition of 5-HT signaling may constitute a new target for antiangiogenic anticancer drug discovery. In the current study we clearly demonstrate that 5-HT-induced angiogenesis was mediated through the 5-HT1 receptor-linked Gβγ/Src/PI3K pathway, but not through the MAPK/ERK/p38 pathway. In addition, 5-HT induced production of NADPH oxidase (NOX)-derived reactive oxygen species (ROS). In an effort to develop new molecularly targeted anticancer agents against 5-HT action in tumor growth, we demonstrate that BJ-1108, a derivative of 6-amino-2,4,5-trimethylpyridin-3-ol, significantly inhibited 5-HT-induced angiogenesis. In addition, BJ-1108 induced a significant reduction in the size and weight of excised tumors in breast cancer cell-inoculated CAM assay, showing proportionate suppression of tumor growth along with inhibition of angiogenesis. In human umbilical vein endothelial cells (HUVECs), BJ-1108 significantly suppressed 5-HT-induced ROS generation and phosphorylation of PI3K/Akt but not of Src. Unlike NOX inhibitors, BJ-1108, which showed better antioxidant activity than vitamin C, barely suppressed superoxide anion induced by mevalonate or geranylgeranyl pyrophosphate which directly activates NOX without help from other signaling molecules in HUVECs, implying that the anti-angiogenic action of BJ-1108 was not mediated through direct action on NOX activation, or free radical scavenging activity. In conclusion, BJ-1108 inhibited 5-HT-induced angiogenesis through PI3K/NOX signaling but not through Src, ERK, or p38.  相似文献   

20.
Activation of protein kinase C (PKC) plays an important role in the negative regulation of receptor signaling, but its effect on insulin-like growth factor-1 (IGF-1) receptor signaling remains unclear. In this study, we characterized the intracellular pathways involved in IGF-1-induced activation of Akt and evaluated the effects of the PKC activator phorbol 12-myristate 13-acetate (PMA) on the Akt activation by IGF-1. IGF-1 induced a time- and concentration-dependent activation of Akt. The effect of IGF-1 was blocked by the phosphatidylinositide 3-kinase (PI3K) inhibitors LY294002 (50 micrometer) and wortmannin (0.5 micrometer), but not by the MEK inhibitor PD98059 (50 micrometer) or the p70 S6 kinase pathway inhibitor rapamycin (50 nm), suggesting that the stimulation of Akt by IGF-1 is mediated by the PI3K pathway. Interestingly, cotreatment with PMA (400 nm) attenuated IGF-1-induced activation of Akt. The attenuation was blocked completely by the PKC inhibitor GO6983 (0.5 micrometer), but only partially by the MEK inhibitor PD98059 (50 micrometer), indicating that MAPK-dependent and -independent pathways are involved. PMA induced the activation of PKC in PC12 cells, and this induction was blocked by GO6983. These data further support the role of PKC in the effect of PMA. Moreover, PKCdelta is likely involved in the action of PMA on the basis of data obtained using isoform-specific inhibitors such as rottlerin. PMA also decreased IGF-1-induced tyrosine phosphorylation of insulin receptor substrate-1 and its association with PI3K. Taken together, these results suggest, for the first time, that stimulation of PKC modulates IGF-1-induced activation of Akt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号