首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mutations in tcl-2 cause defects in the specification of the fates of the descendants of the TL and TR blast cells, whose polarity is regulated by lin-44/Wnt and lin-17/frizzled, during Caenorhabditis elegans development. In wild-type animals, POP-1/TCF/LEF, is asymmetrically distributed to the T cell daughters, resulting in a higher level of POP-1 in the nucleus of the anterior daughter. The POP-1 asymmetric distribution is controlled by lin-44 and lin-17. However, in tcl-2 mutants, POP-1 is equally distributed to T cell daughters as is observed in lin-17 mutants, indicating that, like lin-17, tcl-2 functions upstream of pop-1. In addition, tcl-2 mutations cause defects in the development of the gonad and the specification of fate of the posterior daughter of the P12 cell, both of which are controlled by the Wnt pathway. Double mutant analyses indicate that tcl-2 can act synergistically with the Wnt pathway to control gonad development as well as P12 descendant cell fate specification. tcl-2 encodes a novel protein. A functional tcl-2::gfp construct was weakly expressed in the nuclei of the T cell and its descendants. Our results suggest that tcl-2 functions with Wnt pathways to control T cell fate specification, gonad development, and P12 cell fate specification.  相似文献   

3.
4.
5.
In Caenorhabditis elegans, Wnt signaling pathways are important in controlling cell polarity and cell migrations. In the embryo, a novel Wnt pathway functions through a (beta)-catenin homolog, WRM-1, to downregulate the levels of POP-1/Tcf in the posterior daughter of the EMS blastomere. The level of POP-1 is also lower in the posterior daughters of many anteroposterior asymmetric cell divisions during development. I have found that this is the case for of a pair of postembryonic blast cells in the tail. In wild-type animals, the level of POP-1 is lower in the posterior daughters of the two T cells, TL and TR. Furthermore, in lin-44/Wnt mutants, in which the polarities of the T cell divisions are frequently reversed, the level of POP-1 is frequently lower in the anterior daughters of the T cells. I have used a novel RNA-mediated interference technique to interfere specifically with pop-1 zygotic function and have determined that pop-1 is required for wild-type T cell polarity. Surprisingly, none of the three C. elegans (beta)-catenin homologs appeared to function with POP-1 to control T cell polarity. Wnt signaling by EGL-20/Wnt controls the migration of the descendants of the QL neuroblast by regulating the expression the Hox gene mab-5. Interfering with pop-1 zygotic function caused defects in the migration of the QL descendants that mimicked the defects in egl-20/Wnt mutants and blocked the expression of mab-5. This suggests that POP-1 functions in the canonical Wnt pathway to control QL descendant migration and in novel Wnt pathways to control EMS and T cell polarities.  相似文献   

6.
beta-Catenin signaling determines the proximal-distal axis of the C. elegans gonad by promoting distal fate in asymmetrically dividing somatic gonad precursor cells (SGPs). Impaired function of the Wnt effector POP-1/TCF, its coactivator SYS-1/beta-catenin, and of upstream components including beta-catenin WRM-1 causes all SGP daughters to adopt the proximal fate. Consequently, no distal tip cells (DTCs) that would lead differentiation of gonad arms form in the affected hermaphrodites. Here, we show that deficiency of the nuclear receptor NHR-25 has the opposite effect: extra DTCs develop instead of proximal cells. NHR-25 knockdown restores DTC formation and fertility in pop-1 and sys-1 mutants, suggesting that a balance between NHR-25 and beta-catenin pathway activities is required to establish both proximal and distal fates. This balance relies on direct crossregulation between NHR-25 and the distinct beta-catenin proteins WRM-1 and SYS-1. The nuclear receptor-beta-catenin interaction may be an ancient mechanism of cell-fate decision.  相似文献   

7.
Asymmetric cell divisions produce all 302 neurons of the C. elegans hermaphrodite. Here, we describe a role for a C. elegans Dishevelled homolog, DSH-2, in an asymmetric neuroblast division. In dsh-2 mutants, neurons normally descended from the anterior neuroblast daughter of the ABpl/rpppa blast cell were frequently duplicated, while non-neuronal cells produced by the posterior daughter cell were often missing. These observations indicate that in the absence of dsh-2 function, the posterior daughter cell was transformed into a second anterior-like cell. Loss of mom-5, a C. elegans frizzled homolog, produced a similar phenotype. We also show that the DSH-2 protein localized to the cell cortex in most cells of the embryo. In the absence of MOM-5/Fz, DSH-2 was localized to the cytoplasm, suggesting that MOM-5 regulates asymmetric cell division by controlling the localization of DSH-2. Although all neurons in C. elegans are produced by an invariant pattern of cell divisions, our results indicate that cell signaling may contribute to asymmetric neuroblast division during embryogenesis.  相似文献   

8.
The polarities of several cells that divide asymmetrically during Caenorhabditis elegans development are controlled by Wnt signaling. LIN-44/Wnt and LIN-17/Fz control the polarities of cells in the tail of developing C. elegans larvae, including the male-specific blast cell, B, that divides asymmetrically to generate a larger anterior daughter and a smaller posterior daughter. We determined that WRM-1 and the major canonical Wnt pathway components: BAR-1, SGG-1/GSK-3 and PRY-1/Axin were not involved in the control of B cell polarity. However, POP-1/Tcf is involved and is asymmetrically distributed to the B daughter nuclei, as it is in many cell divisions during C. elegans development. Aspects of the B cell division are reminiscent of the divisions controlled by the planar cell polarity (PCP) pathway that has been described in both Drosophila and vertebrate systems. We identified C. elegans homologs of Wnt/PCP signaling components and have determined that many of them appear to be involved in the regulation of B cell polarity. Specifically, MIG-5/Dsh, RHO-1/RhoA and LET-502/ROCK appear to play major roles, while other PCP components appear to play minor roles. We conclude that a noncanonical Wnt pathway, which is different from other Wnt pathways in C. elegans, regulates B cell polarity.  相似文献   

9.
Metazoan stem cells repopulate tissues during adult life by dividing asymmetrically to generate another stem cell and a cell that terminally differentiates. Wnt signaling regulates the division pattern of stem cells in flies and vertebrates. While the short-lived nematode C. elegans has no adult somatic stem cells, the lateral epithelial seam cells divide in a stem cell-like manner in each larval stage, usually generating a posterior daughter that retains the seam cell fate and an anterior daughter that terminally differentiates. We show that while wild-type adult animals have 16 seam cells per side, animals with reduced function of the TCF homolog POP-1 have as many as 67 seam cells, and animals with reduced function of the β-catenins SYS-1 and WRM-1 have as few as three. Analysis of seam cell division patterns showed alterations in their stem cell-like divisions in the L2-L4 stages: reduced Wnt signaling caused both daughters to adopt non-seam fates, while activated Wnt signaling caused both daughters to adopt the seam fate. Therefore, our results indicate that Wnt signaling globally regulates the asymmetric, stem cell-like division of most or all somatic seam cells during C. elegans larval development, and that Wnt pathway regulation of stem cell-like behavior is conserved in nematodes.  相似文献   

10.
During C. elegans development, Wnt/WG signaling is required for differences in cell fate between sister cells born from anterior/posterior divisions. A beta-catenin-related gene, wrm-1, and the lit-1 gene are effectors of this signaling pathway and appear to downregulate the activity of POP-1, a TCF/LEF-related protein, in posterior daughter cells. We show here that lit-1 encodes a serine/threonine protein kinase homolog related to the Drosophila tissue polarity protein Nemo. We demonstrate that the WRM-1 protein binds to LIT-1 in vivo and that WRM-1 can activate the LIT-1 protein kinase when coexpressed in vertebrate tissue culture cells. This activation leads to phosphorylation of POP-1 and to apparent changes in its subcellular localization. Our findings provide evidence for novel regulatory avenues for an evolutionarily conserved Wnt/WG signaling pathway.  相似文献   

11.
In C. elegans the 4-cell stage blastomere EMS is an endomesodermal precursor. Its anterior daughter, MS, makes primarily mesodermal cells, while its posterior daughter E generates the entire intestine. The gene regulatory network underlying specification of MS and E has been the subject of study for more than 15 years. A key component of the specification of the two cells is the involvement of the Wnt/β-catenin asymmetry pathway, which through its nuclear effector POP-1, specifies MS and E as different from each other. Loss of pop-1 function results in the mis-specification of MS as an E-like cell, because POP-1 directly represses the end-1 and end-3 genes in MS, which would otherwise promote an endoderm fate. A long-standing question has been whether POP-1 plays a role in specifying MS fate beyond repression of endoderm fate. This question has been difficult to ask because the only chromosomal lesions that remove both end-1 and end-3 are large deletions removing hundreds of genes. Here, we report the construction of bona fide end-1 end-3 double mutants. In embryos lacking activity of end-1, end-3 and pop-1 together, we find that MS fate is partially restored, while E expresses early markers of MS fate and adopts characteristics of both MS and C. Our results suggest that POP-1 is not critical for MS specification beyond repression of endoderm specification, and reveal that Wnt-modified POP-1 and END-1/3 further reinforce E specification by repressing MS fate in E. By comparison, a previous work suggested that in the related nematode C. briggsae, Cb-POP-1 is not required to repress endoderm specification in MS, in direct contrast with Ce-POP-1, but is critical for repression of MS fate in E. The findings reported here shed new light on the flexibility of combinatorial control mechanisms in endomesoderm specification in Caenorhabditis.  相似文献   

12.
13.
Kostić I  Li S  Roy R 《Developmental biology》2003,263(2):242-252
The formation of a complex multicellular organism requires the precise specification of many diverse cell types at the correct time and position throughout development. This may be achieved by coordinating cell fate specification processes with progression through the cell cycle. Here, we show that the extra distal tip cells (DTCs) associated with the loss of cki-1, a Caenorhabditis elegans homologue of the cyclin-dependent kinase inhibitor p27, do not arise from duplications of pre-existing DTCs, but that they are formed from another cell type within the somatic gonad. Results from our laser microsurgery experiments suggest that the extra DTCs are caused by aberrant somatic gonadal precursor cell divisions in the absence of cki-1, resulting in abnormal daughter cell fates. cki-1(RNAi) animals also possess extra anchor cells and ectopic gonad arms with variable sheath cell numbers and positioning. In addition, cki-1(RNAi) animals display an endomitotic oocyte (Emo) phenotype. Our results uncover a novel role of this CKI in cell fate acquisition, either by directly influencing specification, or through a more conventional role in appropriately linking cell cycle phase with this process.  相似文献   

14.
15.
16.
17.
18.
In wild-type Caenorhabditis elegans, the hermaphrodite gonad is a symmetrical structure, whereas the male gonad is asymmetric. Two cellular processes are critical for the generation of these sexually dimorphic gonadal shapes during early larval development. First, regulatory "leader" cells that control tube extension and gonadal shape are generated. Second, the somatic gonadal precursor cells migrate and become rearranged to establish the adult pattern. In this paper, we introduce sys-1, a gene required for early organization of the hermaphrodite, but not the male, gonad. The sys-1(q544) allele behaves genetically as a strong loss-of-function mutant and putative null. All hermaphrodites that are homozygous for sys-1(q544) possess a grossly malformed gonad and are sterile; in contrast, sys-1(q544) males exhibit much later and only partially penetrant gonadal defects. The sys-1(q544) hermaphrodites exhibit two striking early gonadal defects. First, the cell lineages of Z1 and Z4, the somatic gonadal progenitor cells, produce extra cells during L2, but the regulatory cells that control gonadal shape are not generated. Second, somatic gonadal precursor cells do not cluster centrally during late L2, and the somatic gonadal primordium typical of hermaphrodites is not established. In contrast, the early male gonadal lineage is asymmetric as normal, the somatic gonadal primordium typical of males is established correctly, and the male adult gonadal structures can be normal. We conclude that the primary role of sys-1 is to establish the shape and polarity of the hermaphrodite gonad.  相似文献   

19.
In C. elegans, a Wnt/WG-like signaling pathway down-regulates the TCF/LEF-related protein, POP-1, to specify posterior cell fates. Effectors of this signaling pathway include a beta-catenin homolog, WRM-1, and a conserved protein kinase, LIT-1. WRM-1 and LIT-1 form a kinase complex that can directly phosphorylate POP-1, but how signaling activates WRM-1/LIT-1 kinase is not yet known. Here we show that mom-4, a genetically defined effector of polarity signaling, encodes a MAP kinase kinase kinase-related protein that stimulates the WRM-1/LIT-1-dependent phosphorylation of POP-1. LIT-1 kinase activity requires a conserved residue analogous to an activating phosphorylation site in other kinases, including MAP kinases. These findings suggest that anterior/posterior polarity signaling in C. elegans may involve a MAP kinase-like signaling mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号