首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Low molecular weight chitosans (LMWC) of different molecular weight (4.1-5.6 kDa) were obtained by the depolymerization of chitosan using papain (from Carica papaya latex, EC. 3.4.22.2) at optimum conditions of pH 3.5 and 37 degrees C for 1-5 h. Scanning electron microscopy (SEM) showed approximately 15-fold decrease in the particle size after depolymerization. Decrease in the molecular weight was associated with decrease in the degree of acetylation (DA) as evidenced by circular dichroism (CD), FT-IR and solid-state CP-MAS 13C-NMR data. X-ray diffraction pattern revealed slight decrease in the crystallinity index (CrI) whereas the 13C-NMR data showed molecular inhomogeneity. LMWC showed lytic effect towards Bacillus cereus and Escherichia coli more efficiently than native chitosan. The growth inhibitory effect was maximal towards B. cereus, with minimum inhibitory concentration (MIC) of 0.01% (w/v).  相似文献   

2.
The homogeneous low molecular weight chitosans (LMWC) of molecular weight 9.5–8.5 kDa, obtained by pronase catalyzed non-specific depolymerization (at pH 3.5, 37 °C) of chitosan showed lyses of Bacillus cereus and Escherichia coli more efficiently (100%) than native chitosan (< 50%). IR and 1H-NMR data showed decrease in the degree of acetylation (14–19%) in LMWC compared to native chitosan (∼ 26%). Minimum inhibitory concentration of LMWC towards 106 CFU ml− 1 of B. cereus was 0.01% (w/v) compared to 0.03% for 104 CFU ml− 1 of E. coli. SEM revealed pore formation as well as permeabilization of the bacterial cells, as also evidenced by increased carbohydrate and protein contents as well as the cytoplasmic enzymes in the cell-free supernatants. N-terminal sequence analyses of the released proteins revealed them to be cytoplasmic/membrane proteins. Upon GLC, the supernatant showed characteristic fatty acid profiles in E. coli, thus subscribing to detachment of lipopolysaccharides into the medium, whereas that of B. cereus indicated release of surface lipids. The mechanism for the observed bactericidal activity of LMWC towards both Gram-positive and Gram-negative bacteria has been discussed.  相似文献   

3.
Pepsin (EC 3.4.4.1) from porcine stomach mucosa caused depolymerization of a chitosan sample (a copolymer of glucosamine and N-acetylglucosamine linked by beta-1-4-glycosidic bonds). N-terminal sequence and zymogram analyses confirmed dual (proteolytic and chitosanolytic) activities of pepsin. Optimum depolymerization occurred at pH 5.0 and 45 degrees C with an activity of 4.98 U. Low molecular weight chitosan (LMWC), the major depolymerization product, was obtained in a yield of 75-82%, the degree of polymerization of which depended on reaction time. The LMWC showed a nearly 10-14-fold decrease in the molecular mass as compared to native chitosan, which was also confirmed by GPC and HPLC analyses. IR and 13C NMR spectra indicated a decrease in the degree of acetylation (DA, approximately 13.4-18.8%) as compared to native chitosan (approximately 25.7%), which was in accordance with the CD analysis. Native chitosan had a crystallinity index (CrI) of approximately 70%, whereas there was a decrease in the CrI of LMWC (approximately 61%). The latter showed a better bactericidal activity toward both Bacillus cereus and Escherichia coli, which was more toward the former. The bactericidal activity was essentially due to the lytic and not static effect of LMWC, as evidenced by the pore formation on the bacterial cell surface when observed under SEM. This study suggests the possible use of pepsin in place of chitosanase, which is expensive and unavailable in bulk quantities for the production of LMWC of desired molecular mass that has diversified applications in various fields.  相似文献   

4.
An isozyme of pectinase from Aspergillus niger with polygalacturonase activity caused chitosanolysis at pH 3.5, resulting in low-molecular weight chitosan (86%), chitooligosaccharides (COs, 4.8%) and monomers (2.2%). HPLC showed the presence of COs with DP ranging from 2 to 6. Charcoal-Celite chromatography and re-N-acetylation of the COs followed by CD, IR, MALDI-TOF-MS and FAB-MS analyses revealed an abundance of chitobiose, chitotriose and chitotetraose. The COs-monomeric mixture showed a bactericidal effect towards Bacillus cereus and Escherichia coli more efficiently than native chitosan. Among the chitooligomers, the hexamer showed maximum antibacterial effect followed by the penta-, tetra-, tri- and dimers. Of the two monomers, only GlcN showed slight bacterial growth inhibition. SEM revealed bactericidal action patterns of COs-monomeric mixture towards B. cereus and E. coli.  相似文献   

5.
Low molecular weight chitosan (LMWC) and chitooligosaccharides (COs), obtained by persulfate-induced depolymerization of chitosan showed scavenging of OH. and O2.- radicals and offered protection against calf thymus DNA damage. Over 85% inhibition of free radicals and DNA protection were observed. LMWC (0.05 micromol) showed a strong inhibitory activity compared to COs (3.6 micromol). Further, LMWC showed calf thymus DNA condensation reversibly giving stability, as evident from CD, TEM and melting curves (Tm). A fluorescence study suggests the binding of LMWC in the minor groove, forming H-bonds to the backbone phosphates without distorting the double helix structure.  相似文献   

6.
We studied the effect of low molecular weight chitosan (LMWC) on the formation of osteoclast-like multinucleated cells (OCLs) in the co-culture of mouse osteoblastic cells and bone marrow cells in the presence of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. LMWC at 440 microg/ml inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive OCLs induced by 1alpha,25(OH)2D3. We prepared OCLs in the co-culture of osteoblastic cells and bone marrow cells. The effect of LMWC on pit formation by OCLs was examined using dentin slices, and LMWC inhibited pit formation at 440 microg/ml. Oral administration of the LMWC to ovariectomized rats prevented a decrease in bone mineral density (BMD) of the lumbar vertebra without affecting the body and uterus weights. These results suggested that LMWC prevented a decrease in BMD in vivo by inhibiting osteoclastic bone resorption.  相似文献   

7.
Low-molecular-weight chitosan (LMWC) was obtained by enzymatic degradation and ultrafiltration separation. LMWC nanoparticles with LMWC having 20 kDa weight average molecular weight (Mw) were then prepared by solvent evaporation method. The resultant nanoparticles were spherical with a narrow particle size distribution. LMWC nanoparticles loaded with insulin as a model drug were prepared. The average entrapment efficiency of insulin could reach up to 95.54%. The in vitro drug release profiles from the nanoparticles showed an initial burst of release in the first 2 h, followed by zero order release kinetics. In vivo pharmacodynamics of chitosan nanoparticles containing insulin showed that the nanoparticles showed some hypoglycemic activity. Compared with an insulin solution, a relative bioavailability of 0.737 was observed for four times the dosage of insulin in the chitosan nanoparticles after pulmonary administration.  相似文献   

8.
Pronase (type XXV serine protease from Streptomyces griseus) efficiently depolymerizes chitosan, a linear beta-->1,4-linked polysaccharide of 2-amino-deoxyglucose and 2-amino-2-N-acetylamino-D-glucose, to low-molecular weight chitosans (LMWC), chito-oligomers (degree of polymerization, 2-6) and monomer. The maximum depolymerization occurred at pH 3.5 and 37 degrees C, and the reaction obeyed Michaelis-Menten kinetics with a Km of 5.21 mg.mL(-1) and Vmax of 138.55 nmoles.min(-1).mg(-1). The molecular mass of the major product, LMWC, varied between 9.0 +/- 0.5 kDa depending on the reaction time. Scanning electron microscopy of LMWC showed an approximately eightfold decrease in particle size and characterization by infrared spectroscopy, circular dichroism, X-ray diffractometry and 13C-NMR revealed them to possess a lower degree of acetylation, hydration and crystallinity compared to chitosan. Chitosanolysis by pronase is an alternative and inexpensive method to produce a variety of chitosan degradation products that have wide and varied biofunctionalities.  相似文献   

9.
We used site-directed mutagenesis to introduce both a NdeI restriction endonuclease site and an initiator codon at the junction of the leader and structural gene sequences of the metallo-beta-lactamase of Bacillus cereus 5/B/6. This construct allowed us to clone just the beta-lactamase structural gene sequence into an Escherichia coli expression vector. E. coli cells were transformed with the recombinant plasmid, the B. cereus beta-lactamase was expressed, and these E. coli cells were disrupted by sonic oscillation. When the resultant suspensions were clarified by ultracentrifugation, the B. cereus beta-lactamase represented 15% of the total protein in the supernatant. Subsequent gel filtration and ion-exchange chromatography allowed the first reported purification to homogeneity of the B. cereus beta-lactamase from E. coli with an 87% recovery and an overall yield of 17 mg of enzyme per liter of cell culture. The electrophoretic mobilities of the enzyme expressed in and purified from E. coli and the enzyme purified directly from B. cereus were identical in both native and sodium dodecyl sulfate gel electrophoreses. As with the B. cereus enzyme, Km and Vmax (using cephalosporin C as substrate) for the enzyme purified from E. coli were 0.39 mM and 1333 units/mg protein, respectively. Likewise, the Co(II)-reconstituted enzyme purified from E. coli, which retained 29% of the activity of the Zn(II) enzyme, had electronic absorption spectra with maxima at 347, 551, 617, and 646 nm with extinction coefficients of 900, 250, 173, and 150 M-1 cm-1, respectively.  相似文献   

10.
AIMS: To develop new measures for controlling both spoilage and pathogenic micro-organisms in unpasteurized apple juice using chitosan. METHODS AND RESULTS: Micro-organisms were isolated and identified from apple juice treated or untreated with chitosan using enrichment, selective media, microscopy, substrate assimilation patterns and ribosomal DNA profiling. Chitosan (0.05-0.1%) delayed spoilage by yeasts at 25 degrees C for up to 12 days but the effect was species specific: Kloeckera apiculata and Metschnikowia pulcherrima were inactivated but Saccharomyces cerevisiae and Pichia spp. multiplied slowly. In challenge experiments at 25 degrees C, total yeast counts were 3-5 log CFU ml(-1) lower in chitosan-treated juices than in the controls for 4 days but the survival of Escherichia coli O157:H7 was extended from 1 to 2 days; at 4 degrees C, chitosan reduced the yeast counts by 2-3 log CFU ml(-1) for up to 10 days but survival of the pathogen was prolonged from 3 to 5 days. The survival of Salmonella enterica serovar Typhimurium was unaffected by chitosan at either temperature. CONCLUSIONS: The addition of chitosan to apple juice delayed spoilage by yeasts but enhanced the survival of E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that the use of chitosan in the treatment of fruit juices may potentially lead to an increased risk of food poisoning from E. coli O157:H7.  相似文献   

11.
The viscosity of a chitosan solution was rapidly lowered in the presence of pectinase from Aspergillus niger at pH 3.0 and 37 degrees C. The low molecular weight chitosans (LMWC) had a molecular weight in the range 20,000-5000 Da. Circular dichroism spectra showed a decrease in the segment of acetylated glucosamine units, whereas X-ray diffraction and CP-MAS 13C NMR indicated higher crystallinity and polymorphism in LMWC. The latter on thermal drying resulted in structural alterations, and yielded an insoluble product. FT-IR and X-ray diffraction showed no evidence of either Schiff's base linkage or any annealed polymorph. CP-MAS 13C NMR showed marked changes in the chain conformations of LMWC, which are believed to be responsible for its loss of solubility and functionality.  相似文献   

12.
The construction of four vectors for high-level expression in Escherichia coli of the phosphatidylinositol-specific phospholipase C from Bacillus cereus or Bacillus thuringiensis is described. In all constructs the coding sequence for the mature phospholipase is precisely fused to the E. coli heat-stable enterotoxin II signal sequence for targeting of the protein to the periplasm. In one set of plasmids expression of the B. cereus or B. thuringiensis enzyme is under control of the E. coli alkaline phosphatase promoter, while in a second set of plasmids expression is under control of a lac-tac-tac triple tandem promoter. A simple and rapid procedure for complete purification of the phospholipase C overproduced in E. coli, involving isolation of the periplasmic proteins by osmotic shock followed by a single column chromatography step, is described. The largest quantity of purified enzyme, 40-60 mg per liter culture, is obtained with the plasmid expressing the B. cereus enzyme under control of the lac-tac-tac promoter. Lower quantities are obtained with the plasmids containing the alkaline phosphatase promoter (15-20 and 4-6 mg/liter for the B. cereus and B. thuringiensis enzymes, respectively) and with the plasmid expressing the B. thuringiensis phospholipase under control of the lac-tac-tac promoter (15-20 mg/liter). A comparison of the functional properties of the recombinant phospholipases with the native enzymes isolated from B. cereus or B. thuringiensis culture supernatant shows that they are identical with respect to their catalytic functions, viz., cleavage of phosphatidylinositol and cleavage of the glycosyl-phosphatidylinositol membrane anchor of bovine erythrocyte acetylcholinesterase.  相似文献   

13.
Brevibacillus choshinensis (Bacillus brevis) is a protein-hyperproducing bacterium with a useful host-vector system for the production of recombinant proteins. Here, we cloned the ccdA-catA (cmacr;cdA āssociated thioredoxin-like tmacr;hiol-disulfide oxidoreductase) locus of B. choshinensis HPD31-S5. CatA protein (molecular weight, 19664) contains a thioredoxin-like motif, Cys-Gly-Pro-Cys. It was successfully expressed in B. choshinensis extracellularly ( approximately 100 microg x ml(-1) culture) using the secretion vector pNCMO2, and in Escherichia coli intracellularly ( approximately 350 microg x ml(-1) culture) with an amino-terminal His-tag. Both recombinant proteins showed thiol-disulfide oxidoreductase activity. Incubation of non-native human epidermal growth factor (hEGF) containing incorrect disulfide bonds with B. choshinensis cells secreting CatA protein resulted in the stimulation of the conversion of non-native hEGF to the native form. Furthermore, co-expression of CatA protein with recombinant hEGF in the B. choshinensis production system increased the yield of native hEGF.  相似文献   

14.
K C Terlesky  F R Tabita 《Biochemistry》1991,30(33):8181-8186
Two heat-shock proteins that show high identity with the Escherichia coli chaperonin 60 (groEL) and chaperonin 10 (groES) chaperonin proteins were purified and characterized from photolithoautotrophically grown Rhodobacter sphaeroides. The proteins were purified by using sucrose density gradient centrifugation and Mono-Q anion-exchange chromatography. In the presence of 1 mM ATP, the chaperonin 10 and chaperonin 60 proteins bound to each other and comigrated as a large complex during sucrose density gradient centrifugation. The native molecular weights of each protein as determined by gel filtration chromatography were 889,200 for chaperonin 60 and 60,000 for chaperonin 10. Chaperonin 60 is comprised of monomers with a molecular weight of 61,000 and chaperonin 10 is comprised of monomers with a molecular weight of 12,700 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Chaperonin 60 was 9.3% of the total soluble cell protein during photolithoautotrophic growth which increased to 28.5% following heat-shock treatment. When cells were grown photoheterotrophically or chemoheterotrophically, chaperonin 60 was reduced to 6.7% and 3.5%, respectively, of the total soluble protein. The N-terminal amino acid sequence of each protein was determined; chaperonin 60 of R. sphaeroides showed 72% identity to E. coli chaperonin 60 protein, and R. sphaeroides chaperonin 10 showed 45% identity with E. coli chaperonin 10. R. sphaeroides chaperonin 60 catalyzed ATP hydrolysis with a specific activity of 134 nmol min-1 mg-1 (kcat = 0.13 s-1) and was inhibited by R. sphaeroides chaperonin 10, but not E. coli chaperonin 10. The E. coli chaperonin 60 ATPase activity was inhibited by chaperonin 10 from both R. sphaeroides and E. coli.  相似文献   

15.
The hypolipidemic activities of high (712.6kDa) and low (39.8kDa) molecular weight chitosan (HMWC and LMWC) were evaluated in rats fed high-fat diets. Thirty-two male Sprague-Dawley rats in four groups were fed on three high-fat diets with each of them containing HMWC, LMWC or cellulose (high-fat control), and a control normal-fat diet for eight weeks. Compared with HMWC group, LMWC group showed decreased body weight gain, serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), as well as decreased liver triglyceride (TG). Fecal fat and cholesterol of LMWC group was lower than those of HMWC group. However, the activities of liver and serum lipoprotein lipase (LPL) of LMWC group were increased compared with HMWC group. The obtained results suggested that hypolipidemic activity of LMWC was better than HMWC, which might be partially attributed to the increase of serum and liver LPL activities.  相似文献   

16.
The ability of numerous diverse compounds and ions to cross the bacterial cytoplasmic membrane by diffusion and active transport is highly dependent on cytoplasmic membrane fluidity, which can be measured using fluorescent probes to estimate membrane polarization values. However, membrane polarization data are lacking for most bacterial species. The cytoplasmic membrane polarization values for Arthrobacter sp. ATCC 21908, Bacillus cereus NRC 3045, Pseudomonas fluorescens R2F, Pseudomonas putida NRC 2986 and Escherichia coli C600 bacterial cells were spectrofluorometrically measured over a temperature range from 10 to 50 degrees C, and in the absence and presence of 1 microg/ml tetracycline, using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) to obtain new information on their membrane fluidity. At an assay temperature of 10 degrees C, E. coli cells grown in the absence of tetracycline exhibited the highest cytoplasmic membrane polarization value (least fluid membrane) of 0.446, followed by values of 0.392, 0.371, 0.344 and 0.293, respectively, for B. cereus, Arthrobacter sp., P. fluorescens and P. putida. At an assay temperature of 30 degrees C, the polarization values ranged from 0.357 to 0.288 for cells grown in the absence of tetracycline, regardless of the species. B. cereus grown in the presence of 1 microg/ml tetracycline had lower polarization values than when grown in the absence of this antibiotic at all assay temperatures. Regardless of the absence or presence of 1 microg/ml tetracycline in the growth medium, all bacterial species generally exhibited a more fluid membrane as the assay temperature increased from 10 to 50 degrees C. To our knowledge, these are some of the first cytoplasmic membrane polarization values reported for these Gram-negative and Gram-positive bacteria over a broad temperature range and also for cells grown in the presence of tetracycline.  相似文献   

17.
Among the many potential virulence factors of B. cereus, Haemolysin BL is a unique and potent three component pore forming toxin composed of a binding component, B, and two lytic components, L(1) and L(2). Heterogeneity in nucleic acid and protein sequences of HBL components and problems during expression of L(1) and L(2) proteins in recombinant host due to their toxicity causes problems for development of specific detection systems based on PCR and Immunoassay, respectively. Commercially available kit (BCET RPLA, Oxoid) is useful for detection of L(2) component of HBL, but detection of only one component is insufficient to give comprehensive view on HBL toxin producing strains as some strains produced only one or two of the three HBL components. To address above mentioned problems, in this study, we cloned conserved domains of B, L(1) and L(2) components together as single fusion gene and expressed as recombinant multidomain chimeric protein in E. coli. The resultant protein having L(1), B and L(2) components in the form of single protein had no toxicity towards E. coli as we followed truncated protein approach. The hyperimmune antisera raised in mice against r-chimeric protein reacted with all the three components of HBL toxin of B. cereus (ATCC 14579) and provided three reaction bands at ~40 kDa to ~50 kDa regions during Western blot analysis. The hyperimmune sera of r-chimeric protein also notably neutralized the hemolytic activity of native HBL toxin. These results demonstrated that the obtained chimeric protein is correct and retained the antigenicity of native HBL toxin components. Therefore, it has better application in the development of a comprehensive HBL detection immunoassay and may also be a potential candidate molecule for vaccine studies.  相似文献   

18.
In the last 20 years Escherichia coli O157: H7 has emerged as a new pathogen, causing worldwide disease, death and economic loss. Different studies have revealed important survival characteristics of this pathogen, although there are divergent criteria about its ability to survive in various mayonnaise formulations. We studied the effect of different mayonnaise concentrations (0%, 18%, 37% and 56%) (weight/weight) over the survival of the bacterium in common foods from a neotropical environment (Costa Rica). High [10(7)-10(8) Colony Forming Units (CFU)/ml] and low E. coli populations (10(4)-10(6) CFU/ml) were inoculated, (three replicates) in meat, chopped cabbage and poultry, and mixed with commercial mayonnaise to obtain the concentrations specified. They were incubated at 12 degrees C for 24, 48 and 72 hr. The E. coli O157: H7 enumeration was done according to a standard methodology. Populations of E. coli O157: H7 showed an increasing trend during the first incubation period (48 hr), in all the preparations, regardless of the fat concentration used. Our data indicate that E. coli O157: H7 is capable of surviving and growing in meat, cabbage and poultry mixed with mayonnaise, independently of its concentration.  相似文献   

19.
Water-soluble low-molecular weight chitosan (LMWC) and chitooligosaccharides (COs) were obtained from chitosan (16% N-acetylation) by depolymerization induced by potassium persulfate under nitrogen atmosphere for 2 h. They were characterized by IR, X-ray, HPLC and (13)C-NMR. Splitting of C3/C5 signals in the latter indicated a newer conformation, and also showed prominence of acetyl groups in LMWC, may be due to cleavage between two consecutive deacetylated residues. Molecular weight of LMWC, determined by HPSEC, showed a single peak of approximately 37 kDa. HPLC analysis of the solvent-extracted fraction revealed COs enriched with pentamer, hexamer and higher oligomers. The effect of LMWC and COs on the growth of Ehrlich ascites tumor (EAT) cells and tumor-induced neovascularization was studied. COs (50 microg) were more effective compared to LMWC (100 microg) and proved to be potent angioinhibitory and antitumor compounds, as shown by inhibition of angiogenesis and inducing apoptosis as a function of DNA fragmentation.  相似文献   

20.
AIMS: A kinetic 5'-nuclease polymerase chain reaction (real-time PCR) for the quantification of Escherichia coli was developed. METHODS AND RESULTS: Specific primers and a fluorogenic probe oriented to sfmD gene, encoding a putative outer membrane export usher protein, were designed. The PCR system was highly specific and sensitive for E. coli, as determined with 37 non-E. coli strains (exclusivity, 100%) and 24 E. coli strains (inclusivity, 100%). When used in real-time PCR, linear calibration lines were obtained in the range from 10(2) to 10(8) CFU ml(-1) for three E. coli strains. Salmonella Enteritidis (10(6) CFU ml(-1)) or Citrobacter freundii (10(6) CFU ml(1)) had no effect on quantification of E. coli by the method. CONCLUSIONS: The developed real-time PCR is suitable for rapid quantification of E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: In connection to an appropriate sample preparation technique, the method is suitable for food safety and technological hygiene applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号