首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微孢子虫(Microsporidia)是一类专性细胞内寄生的单细胞真核生物,在科研、医疗、农业、商业等领域具有重要影响。由于其不具有某些典型的真核生物细胞结构,如线粒体、过氧化物酶体、高尔基体、鞭毛,曾将其归属于古真核生物谱系,认为其进化历程先于这些细胞器的起源,该假说也得到了一些生物化学和分子生物学研究证据的支持。然而,在最近十年里,通过更深入的研究,尤其是基于分子序列的系统进化分析,表明微孢子虫和真菌具有一定亲缘关系,并认为其结构的简约性恰好体现了微孢子虫营寄生生活的高度退化现象。目前对微孢子虫的系统进化仍存在各种不同意见,对其进化研究历史进行探讨有着重要意义。本文将按照时间顺序回顾微孢子虫进化分类研究过程中的各种研究成果,并讨论为什么微孢子虫独特的细胞和基因组特性会导致众多的学者在其进化分类问题上争执这么久。  相似文献   

2.
The homobasidiomycetes includes the mushroom-forming fungi. Members of the homobasidiomycetes produce the largest, most complex fruiting bodies in the fungi, such as gilled mushrooms ("agarics"), boletes, polypores, and puffballs. The homobasidiomycetes also includes species that produce minute, cup- or tube-shaped "cyphelloid" fruiting bodies, that rarely exceed 1-2 mm diameter. The goal of this study was to estimate the phylogenetic placements of cyphelloid fungi within the homobasidiomycetes. Sequences from the nuclear large subunit (nuc-lsu) ribosomal DNA (rDNA), 5.8S rDNA, and internal transcribed spacers (ITS) 1 and 2 were obtained for 31 samples of cyphelloid fungi and 16 samples of other homobasidiomycetes, and combined with published sequences. In total, 71 sequences of cyphelloid fungi were included, representing 16 genera. Preliminary phylogenetic analyses of a 1477-sequence data set and BLAST searches using sequences of cyphelloid forms as queries were used to identify taxa that could be close relatives of cyphelloid forms. Subsequent phylogenetic analyses of one data set with 209 samples represented by nuc-lsu rDNA sequences (analyzed with parsimony) and another with 38 samples represented by nuc-lsu and 5.8S rDNA sequences (analyzed with parsimony and maximum likelihood) indicated that cyphelloid forms represent a polyphyletic assemblage of reduced agarics (euagarics clade, Agaricales). Unconstrained tree topologies suggest that there have been about 10-12 origins of cyphelloid forms, but evaluation of constrained topologies with the Shimodaira-Hasegawa test suggests that somewhat more parsimonious scenarios cannot be rejected. Whatever their number, the multiple independent origins of cyphelloid forms represent striking cases of parallel evolutionary reduction of complex fungal morphology.  相似文献   

3.
ABSTRACT. The microsporidian species Enterocytozoon bieneusi, Septata intestinalis and Ameson michaelis were compared by using sequence data of their rRNA gene segments, which were amplified by polymerized chain reaction and directly sequenced. The forward primer 530f (5'-GTGCCATCCAGCCGCGG-3') was in the small subunit rRNA (SSU-rRNA) and the reverse primer 580r (5'-GGTCCGTGTTTCAAGACGG-3') was in the large subunit rRNA (LSU-rRNA). We have utilized these sequence data, the published data on Encephalitozoon cuniculi and Encephalitozoon hellem and our cloned SSU-rRNA genes from E. bieneusi and S. intestinalis to develop a phylogenetic tree for the microsporidia involved in human infection. The higher sequence similarities demonstrated between S. intestinalis and E. cuniculi support the placement of S. intestinalis in the family Encephalitozoonidae. This method of polymerized chain reaction rRNA phylogeny allows the establishment of phylogenetic relationships on limiting material where culture and electron microscopy are difficult or impossible and can be applied to archival material to expand the molecular phylogenetic analysis of the phylum Microspora. In addition, the highly variable region (E. coli numbering 590–650) and intergenic spacer regions in the microsporidia were noted to have structural correspondence, suggesting the possibility that they are coevolving.  相似文献   

4.
Recent studies have detected phylogenetic signals in pathogen–host networks for both soil‐borne and leaf‐infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next‐generation high‐throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host–fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant–fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant–fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.  相似文献   

5.
By exploiting the large body of genome data and the considerable progress in phylogenetic methodology, recent phylogenomic studies have provided new insights into the relationships among major eukaryotic groups. However, confident placement of the eukaryotic root remains a major challenge. This is due to the large evolutionary distance separating eukaryotes from their closest relatives, the Archaea, implying a weak phylogenetic signal and strong long-branch attraction artifacts. Here, we apply a new approach to the rooting of the eukaryotic tree by using a subset of genomic information with more recent evolutionary origin-mitochondrial sequences, whose closest relatives are α-Proteobacteria. For this, we identified and assembled a data set of 42 mitochondrial proteins (mainly encoded by the nuclear genome) and performed Bayesian and maximum likelihood analyses. Taxon sampling includes the recently sequenced Thecamonas trahens, a member of the phylogenetically elusive Apusozoa. This data set confirms the relationships of several eukaryotic supergroups seen before and places the eukaryotic root between the monophyletic "unikonts" and "bikonts." We further show that T. trahens branches sister to Opisthokonta with significant statistical support and question the bikont/excavate affiliation of Malawimonas species. The mitochondrial data set developed here (to be expanded in the future) constitutes a unique alternative means in resolving deep eukaryotic relationships.  相似文献   

6.
The 5.8S and 28S ribosomal RNA sequences of the chytridiomyceteBlastocladiella emersonii were determined. These data were combined with 18S rRNA sequences in order to carry out a phylogenetic analysis based on distance matrix, parsimony, and maximum likelihood methods. The new data confirmed that chytridiomycetes are true fungi and not protists, as was already suggested on the basis of biochemical, ultrastructural, and 18S rRNA data. Within the fungal clade,B. emersonii formed the first line of divergence. The position of the fungi within the eukaryotic “crown” taxa was also reassessed, and the alveolate-stramenopile cluster appeared as their sister group. The stramenopiles also comprise a number of zoosporic fungi, which resemble chytridiomycetes in so many respects, e.g., production of motile spores, thallus morphology, and absorptive nutrition, that they have been classified together with them in the past. This suggests that the possible common ancestor of the fungi, stramenopiles, and alveolates may have been a zoosporic fungus, which would mean that zoosporic fungi are paraphyletic instead of polyphyletic as previously suggested. Correspondence to: R. De Wachter  相似文献   

7.
8.
Functional constraints to modifications in triterpene cyclase amino acid sequences make them good candidates for evolutionary studies on the phylogenetic relatedness of these enzymes in prokaryotes as well as in eukaryotes. In this study, we used a set of identified triterpene cyclases, a group of mainly bacterial squalene cyclases and a group of predominantly eukaryotic oxidosqualene cyclases, as seed sequences to identify 5288 putative triterpene cyclase homologues in publicly available databases. The Cluster Analysis of Sequences software was used to detect groups of sequences with increased pairwise sequence similarity. The sequences fall into two main clusters, a bacterial and a eukaryotic. The conserved, informative regions of a multiple sequence alignment of the family were used to construct a neighbour-joining phylogenetic tree using the AsaturA and maximum likelihood phylogenetic tree using the PhyML software. Both analyses showed that most of the triterpene cyclase sequences were similarly grouped to the accepted taxonomic relationships of the organism the sequences originated from, supporting the idea of vertical transfer of cyclase genes from parent to offspring as the main evolutionary driving force in this protein family. However, a small group of sequences from three bacterial species ( Stigmatella , Gemmata and Methylococcus ) grouped with an otherwise purely eukaryotic cluster of oxidosqualene cyclases, while a small group of sequences from seven fungal species and a sequence from the fern Adiantum grouped consistently with a cluster of otherwise purely bacterial squalene cyclases. This suggests that lateral gene transfer may have taken place, entailing a transfer of oxidosqualene cyclases from eukaryotes to bacteria and a transfer of squalene cyclase from bacteria to an ancestor of the group of Pezizomycotina fungi.  相似文献   

9.
In considering the best possible solutions for answering phylogenetic questions from genomic sequences, we have chosen a strategy that we suggest is superior to others that have gone previously. We have ignored multigene families and instead have used single-gene families. This minimizes the inadvertent analysis of paralogs. We have employed strict data controls and have reasoned that if a protein is not capable of recovering the uncontroversial parts of a phylogenetic tree, then why should we use it for the more controversial parts? We have sliced and diced the data in as many ways as possible in order to uncover the signals in that data. Using this strategy, we have tested two controversial hypotheses concerning eukaryotic phylogenetic relationships: the placement of arthropoda and nematodes and the relationships of animals, plants, and fungi. We have constructed phylogenetic trees from 780 single-gene families from 10 completed genomes and amalgamated these into a single supertree. We have also carried out a total evidence analysis on the only universally distributed protein families that can accurately reconstruct the uncontroversial parts of the phylogenetic tree: a total of five families. In doing so, we ignore the majority of single-gene families that are universally distributed as they do not have the appropriate signals to recover the uncontroversial parts of the tree. We have also ignored every protein that has ever been used previously to address this issue, simply because none of them meet our strict criteria. Using these data controls, site stripping, and multiple analyses, 24 out of 26 analyses strongly support the grouping of vertebrates with arthropods (Coelomata hypothesis) and plants with animals. In the other two analyses, the data were ambivalent. The latter finding overturns an 11-year theory of Eukaryotic evolution; the first confirms what has already been said by others. In the light of this new tree, we re-analyze the evolution of intron gain and loss in the rpL14 gene and find that it is much more compatible with the hypothesis presented here than with the Opisthokonta hypothesis.  相似文献   

10.
Comparative restriction site mapping of the chloroplast genome was performed to examine phylogenetic relationships among 27 species representing 16 genera of the Berberidaceae and two outgroups. Chloroplast genomes of the species included in this study showed no major structural rearrangements (i.e., they are collinear to tobacco cpDNA) except for the extension of the inverted repeat in species of Berberis and Mahonia. Excluding several regions that exhibited severe length variation, a total of 501 phylogenetically informative sites was mapped for ten restriction enzymes. The strict consensus tree of 14 equally parsimonious trees indicated that some berberidaceous genera (Berberis, Mahonia, Diphylleia) are not monophyletic. To explore phylogenetic utility of different parsimony methods phylogenetic trees were generated using Wagner, Dollo, and weighted parsimony for a reduced data set that included 18 species. One of the most significant results was the recognition of the four chromosomal groups, which were strongly supported regardless of the parsimony method used. The most notable difference among the trees produced by the three parsimony methods was the relationships among the four chromosomal groups. The cpDNA trees also strongly supported a close relationship of several generic pairs (e.g., Berberis-Mahonia, Epimedium-Vancouveria, etc.). Maximum likelihood values were computed for the four different tree topologies of the chromosomal groups, two Wagner, one Dollo, and one weighted topology. The results indicate that the weighted tree has the highest likelihood value. The lowest likelihood value was obtained for the Dollo tree, which had the highest bootstrap and decay values. Separate analyses using only the Inverted Repeat (IR) region resulted in a tree that is identical to the weighted tree. Poor resolution and/or support for the relationships among the four chromosomal lineages of the Berberidaceae indicate that they may have radiated from an ancestral stock in a relatively short evolutionary time.  相似文献   

11.
We examine the impact of likelihood surface characteristics on phylogenetic inference. Amino acid data sets simulated from topologies with branch length features chosen to represent varying degrees of difficulty for likelihood maximization are analyzed. We present situations where the tree found to achieve the global maximum in likelihood is often not equal to the true tree. We use the program covSEARCH to demonstrate how the use of adaptively sized pools of candidate trees that are updated using confidence tests results in solution sets that are highly likely to contain the true tree. This approach requires more computation than traditional maximum likelihood methods, hence covSEARCH is best suited to small to medium-sized alignments or large alignments with some constrained nodes. The majority rule consensus tree computed from the confidence sets also proves to be different from the generating topology. Although low phylogenetic signal in the input alignment can result in large confidence sets of trees, some biological information can still be obtained based on nodes that exhibit high support within the confidence set. Two real data examples are analyzed: mammal mitochondrial proteins and a small tubulin alignment. We conclude that the technique of confidence set optimization can significantly improve the robustness of phylogenetic inference at a reasonable computational cost. Additionally, when either very short internal branches or very long terminal branches are present, confident resolution of specific bipartitions or subtrees, rather than whole-tree phylogenies, may be the most realistic goal for phylogenetic methods. [Reviewing Editor: Dr. Nicolas Galtier]  相似文献   

12.
The genus Liriomyza Mik (Diptera: Agromyzidae) is a diverse and globally distributed group of acalyptrate flies. Phylogenetic relationships among Liriomyza species have remained incompletely investigated and have never been fully addressed using molecular data. Here, we reconstruct the phylogeny of the genus Liriomyza using various phylogenetic methods (maximum likelihood, Bayesian inference, and gene tree coalescence) on target-capture-based phylogenomic datasets (nucleotides and amino acids) obtained from anchored hybrid enrichment (AHE). We have recovered tree topologies that are nearly congruent across all data types and methods, and individual clade support is strong across all phylogenetic analyses. Moreover, defined morphological species groups and clades are well-supported in our best estimates of the molecular phylogeny. Liriomyza violivora (Spencer) is a sister group to all remaining sampled Liriomyza species, and the well-known polyphagous vegetable pests [L. huidobrensis (Blanchard), L. langei Frick, L. bryoniae. (Kaltenbach), L. trifolii (Burgess), L. sativae Blanchard, and L. brassicae (Riley)]. belong to multiple clades that are not particularly closely related on the trees. Often, closely related Liriomyza species feed on distantly related host plants. We reject the hypothesis that cophylogenetic processes between Liriomyza species and their host plants drive diversification in this genus. Instead, Liriomyza exhibits a widespread pattern of major host shifts across plant taxa. Our new phylogenetic estimate for Liriomyza species provides considerable new information on the evolution of host-use patterns in this genus. In addition, it provides a framework for further study of the morphology, ecology, and diversification of these important flies.  相似文献   

13.
Until recently, phylogenetic analyses have been routinely based on homologous sequences of a single gene. Given the vast number of gene sequences now available, phylogenetic studies are now based on the analysis of multiple genes. Thus, it has become necessary to devise statistical methods to combine multiple molecular data sets. Here, we compare several models for combining different genes for the purpose of evaluating the likelihood of tree topologies. Three methods of branch length estimation were studied: assuming all genes have the same branch lengths (concatenate model), assuming that branch lengths are proportional among genes (proportional model), or assuming that each gene has a separate set of branch lengths (separate model). We also compared three models of among-site rate variation: the homogenous model, a model that assumes one gamma parameter for all genes, and a model that assumes one gamma parameter for each gene. On the basis of two nuclear and one mitochondrial amino acid data sets, our results suggest that, depending on the data set chosen, either the separate model or the proportional model represents the most appropriate method for branch length analysis. For all the data sets examined, one gamma parameter for each gene represents the best model for among-site rate variation. Using these models we analyzed alternative mammalian tree topologies, and we describe the effect of the assumed model on the maximum likelihood tree. We show that the choice of the model has an impact on the best phylogeny obtained.  相似文献   

14.
15.
The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded data-a common practice in phylogenomic analyses-introduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses.  相似文献   

16.
The power of maximum likelihood tests of positive selection on protein-coding genes depends heavily on detecting and accounting for potential biases in the studied data set. Although the influence of transition:transversion and codon biases have been investigated in detail, little is known about how inaccuracy in the phylogeny used during the calculations affects the performance of these tests. In this study, 3 empirical data sets are analyzed using sets of simulated topologies corresponding to low, intermediate, and high levels of phylogenetic uncertainty. The detection of positive selection was largely unaffected by errors in the underlying phylogeny. However, the number of sites identified as being under positive selection tended to be overestimated.  相似文献   

17.
Lemuroid phylogeny is a source of lively debate among primatologists. Reconstructions based on morphological, physiological, behavioural and molecular data have yielded a diverse array of tree topologies with few nodes in common. In the last decade, molecular phylogenetic studies have grown in popularity, and a wide range of sequences has been brought to bear on the problem, but consensus has remained elusive. We present an analysis based on a composite molecular data set of approx. 6,400 bp assembled from the National Center for Biotechnology Information (NCBI) database, including both mitochondrial and nuclear genes, and diverse analytical methods. Our analysis consolidates some of the nodes that were insecure in previous reconstructions, but is still equivocal on the placement of some taxa. We conducted a similar analysis of a composite data set of approx. 3,600 bp to investigate the controversial relationships within the family Lemuridae. Here our analysis was more successful; only the position of Eulemur coronatus remained uncertain.  相似文献   

18.
Microsporidia are obligate intracellular parasites that were thought to be an ancient eukaryotic lineage based on molecular phylogenies using ribosomal RNA and translation elongation factors. However, this ancient origin of microsporidia has been contested recently, as several other molecular phylogenies suggest that microsporidia are closely related to fungi. Most of the protein trees that place microsporidia with fungi are not well sampled, however, and it is impossible to resolve whether microsporidia evolved from a fungus or from a protistan relative of fungi. We have sequenced beta-tubulins from 3 microsporidia, 4 chytrid fungi, and 12 zygomycete fungi, expanding the representation of beta-tubulin to include all four fungal divisions and a wide diversity of microsporidia. In phylogenetic trees including these new sequences, the overall topology of the fungal beta-tubulins generally matched the expected relationships among the four fungal divisions, although the zygomycetes were polyphyletic in some analyses. The microsporidia consistently fell within this fungal diversification, and not as a sister group to fungi. Overall, beta-tubulin phylogeny suggests that microsporidia evolved from a fungus sometime after the divergence of chytrids. We also found that chytrid alpha- and beta-tubulins are much less divergent than are tubulins from other fungi or microsporidia. In trees in which the only fungal representatives were the chytrids, microsporidia still branched with fungi (i.e., with chytrids), suggesting that the affiliation between microsporidian and fungal tubulins is not an artifact of long-branch attraction.  相似文献   

19.
The maximum likelihood (ML) method of phylogenetic tree construction is not as widely used as other tree construction methods (e.g., parsimony, neighbor-joining) because of the prohibitive amount of time required to find the ML tree when the number of sequences under consideration is large. To overcome this difficulty, we propose a stochastic search strategy for estimation of the ML tree that is based on a simulated annealing algorithm. The algorithm works by moving through tree space by way of a "local rearrangement" strategy so that topologies that improve the likelihood are always accepted, whereas those that decrease the likelihood are accepted with a probability that is related to the proportionate decrease in likelihood. Besides greatly reducing the time required to estimate the ML tree, the stochastic search strategy is less likely to become trapped in local optima than are existing algorithms for ML tree estimation. We demonstrate the success of the modified simulated annealing algorithm by comparing it with two existing algorithms (Swofford's PAUP* and Felsenstein's DNAMLK) for several theoretical and real data examples.  相似文献   

20.
A confidence region for topologies is a data-dependent set of topologies that, with high probability, can be expected to contain the true topology. Because of the connection between confidence regions and hypothesis tests, implicitly or explicitly, the construction of confidence regions for topologies is a component of many phylogenetic studies. Existing methods for constructing confidence regions, however, often give conflicting results. The Shimodaira-Hasegawa test seems too conservative, including too many topologies, whereas the other commonly used method, the Swofford-Olsen-Waddell-Hillis test, tends to give confidence regions with too few topologies. Confidence regions are constructed here based on a generalized least squares test statistic. The methodology described is computationally inexpensive and broadly applicable to maximum likelihood distances. Assuming the model used to construct the distances is correct, the coverage probabilities are correct with large numbers of sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号