首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The L1 retrotransposon codes for a unique bicistronic mRNA, which serves as a transposition intermediate and as a template for the synthesis of two proteins. According to preliminary data, the translation of both cistrons is initiated by a noncanonical mechanism. The L1 mRNA was translated in rabbit reticulocyte lysate (RRL), a standard system widely used to study the eukaryotic mechanisms of protein synthesis. Translation yielded not only the expected products, but also several products of aberrant translation initiation on internal AUG codons. Such products are not generated during in vivo translation of the L1 mRNA. When RRL was supplemented with a cytoplasmic extract of HeLa cells, the aberrant products were not synthesized, while the first cistron was translated with the same efficiency. The efficiency of translation of the second cistron became substantially lower, corresponding to the situation in vivo. These and other experiments clearly demonstrated that the new combined system RRL + HeLa is far more adequate for studying the mechanisms of translation initiation than the standard RRL system.  相似文献   

2.
E. coli ribosomal protein L1 is a translational repressor of the synthesis in vitro of both proteins encoded in the L11 operon (L11 and L1). L1 is shown to act at a single target site within the first 160 bases of the bicistronic mRNA, near (or at) the translation initiation site of the L11 cistron. Synthesis of L1 apparently requires translation of the preceding L11 cistron, allowing regulation of the synthesis of both proteins from a single mRNA target site. This observation suggests a sequential translation mechanism that results in the equimolar synthesis rates of the two proteins observed in vivo. It was found that the presence of 23S rRNA, but not 16S rRNA, relieves translational inhibition by L1. L1 presumably recognizes structural features of the mRNA target site that are homologous to the L1-binding site of 23S rRNA. Although previous work indicated that translationally inhibited ribosomal protein mRNA is degraded in vivo, L1 repressor action in the present in vitro system was found not to involve mRNA degradation.  相似文献   

3.
4.
5.
In addition to the cap-dependent mechanism, eukaryotic initiation of translation can occur by a cap-independent mechanism which directs ribosomes to defined start codons enabled by internal ribosome entry site (IRES) elements. IRES elements from poliovirus and encephalomyocarditis virus are often used to construct bi- or oligocistronic expression vectors to co-express various genes from one mRNA. We found that while cap-dependent translation initiation from bicistronic mRNAs remains comparable to monocistronic expression, internal initiation mediated by these viral IRESs is often very inefficient. Expression of bicistronic expression vectors containing the hepatitis B virus core antigen (HBcAg) together with various cytokines in the second cistron of bicistronic mRNAs gave rise to very low levels of the tested cytokines. On the other hand, the HBcAg was well expressed when positioned in the second cistron. This suggests that the arrangement of cistrons in a bicistronic setting is crucial for IRES-dependent translation of the second cistron. A systematic examination of expression of reporter cistrons from bicistronic mRNAs with respect to position was carried out. Using the dual luciferase assay system we show that the composition of reading frames on a bicistronic mRNA and the order in which they are arranged define the strength of IRES-dependent translation. Although the cellular environment and the nature of the IRES element influence translation strength the dominant determinant is the nature and the arrangement of cistrons on the mRNA.  相似文献   

6.
The L11 operon in Escherichia coli consists of the genes coding for ribosomal proteins L11 and L1. It is known that translation of L1 does not take place unless the preceding L11 cistron is translated, that is, the two cistrons are translationally coupled, and this is the basis of coregulation of the translation of the two cistrons by a single repressor, L1. Several mutational analyses were carried out to define the region responsible for coupling L1 translation with L11 translation. First, by introducing several amber mutations into the L11 gene by a site-directed mutagenesis technique, it was shown that translation by ribosomes down to a position 21 nucleotides upstream, but not to a position 45 nucleotides upstream, from the end of the L11 cistron allowed the initiation of L11 translation. Second, deletion analysis indicated that a region located 23 to 20 nucleotides from the end of the L11 gene was involved in preventing independent initiation from L1 translation. Third, five different mutations obtained by screening for activation of the masked L1 initiation site were found to be clustered in a small region immediately upstream from the Shine-Dalgarno sequence of L1, and all of them were G-to-A transitions. These results, together with some additional experiments with oligonucleotide-directed mutagenesis, defined the region involved in the coupling and suggest that some special feature of this region, probably different from simple masking of the initiation site by base pairing, is responsible for translational coupling. The present results also suggest that there might be specific differences in the primary nucleotide sequence that distinguish independent translational initiation sites from translationally coupled (i.e., masked) initiation sites.  相似文献   

7.
The role of "stream" of ribosomes upon translation of polycistronic mRNAs has been studied using an artificial polycistron. It has been found that the levels of activation of cistron Ci + 1 out of two adjacent cistrons (Ci and Ci + 1) depends, in addition to earlier described effects of mutual arrangement of initiation and termination signals, also on efficiency of translation of the foregoing cistron Ci. The results obtained lead to the conclusion that in polycistronic systems the levels of translation of cistron Ci + 1 can be regulated by "stream" of ribosomes resulted from translation of the proximal cistron Ci.  相似文献   

8.
We have examined the translational regulation of the equine infectious anemia virus (EIAV) bicistronic tat-rev mRNA. Site-directed mutagenesis of the tat leader region followed by expression of the tat-rev cDNA both in vitro and in transiently transfected cells established that tat translation is initiated exclusively at a CTG codon. Increasing the efficiency of tat translation by altering the CTG initiator to ATG resulted in a dramatic decrease in translation of the downstream (rev) cistron, indicating that leaky scanning of the tat CTG initiation codon permitted translation of the downstream rev cistron. Since the tat leader sequences precede the major EIAV splice donor and are therefore present at the 5' termini of both spliced and unspliced viral mRNAs, the expression of all EIAV structural and regulatory proteins is dependent on leaky scanning of the tat initiator.  相似文献   

9.
The structure of a ribosomal protein S8/spc operon mRNA complex   总被引:2,自引:0,他引:2  
In bacteria, translation of all the ribosomal protein cistrons in the spc operon mRNA is repressed by the binding of the product of one of them, S8, to an internal sequence at the 5' end of the L5 cistron. The way in which the first two genes of the spc operon are regulated, retroregulation, is mechanistically distinct from translational repression by S8 of the genes from L5 onward. A 2.8 A resolution crystal structure has been obtained of Escherichia coli S8 bound to this site. Despite sequence differences, the structure of this complex is almost identical to that of the S8/helix 21 complex seen in the small ribosomal subunit, consistent with the hypothesis that autogenous regulation of ribosomal protein synthesis results from conformational similarities between mRNAs and rRNAs. S8 binding must repress the translation of its own mRNA by inhibiting the formation of a ribosomal initiation complex at the start of the L5 cistron.  相似文献   

10.
B Berkhout  R A Kastelein  J van Duin 《Gene》1985,37(1-3):171-179
In overlapping reading frames of prokaryotic mRNA, the ribosome-binding site (RBS) of the downstream cistron is part of the coding sequence of the upstream message. We have examined whether the rate of translation in Escherichia coli can be sufficiently high to preclude the use of an RBS in initiation of protein synthesis when it is part of an actively decoded reading frame. The two sets of gene overlap present in the RNA phage MS2 are used as a model system. We find that translation of an upstream cistron can fully block initiation of protein synthesis at the overlapping RBS of the downstream cistron. Nonsense mutations in the upstream gene restore the translation of the downstream gene.  相似文献   

11.
The upstream open reading frame (uORF) in the mRNA encoding S-adenosylmethionine decarboxylase is a polyamine-responsive element that suppresses translation of the associated downstream cistron in vivo. In this paper, we provide the first direct evidence of peptide synthesis from the S-adenosylmethionine decarboxylase uORF using an in vitro translation system. We examine both the influence of cation concentration on peptide synthesis and the effect of altering the uORF sequence on peptide synthesis. Synthesis of wild type and altered peptides was similar at all concentrations of magnesium tested. In contrast, synthesis of the wild type peptide was more sensitive than that of altered peptides to elevated concentrations of the naturally occurring polyamines, spermidine and spermine, as well as several polyamine analogs. The sensitivity of in vitro synthesis to spermidine was influenced by both the amino acid sequence and the length of the peptide product of the uORF. Findings from the present study correlate with the effects of the uORF and polyamines on translation of a downstream cistron in vivo and support the hypothesis that polyamines and the structure of the nascent peptide create a rate-limiting step in uORF translation, perhaps through a ribosome stalling mechanism.  相似文献   

12.
13.
Initiation of poliovirus RNA translation by internal entry of ribosomes is believed to require the participation of trans-acting factors. The mechanism of action of these factors is poorly defined. The limiting amount of one of these factors, La protein, in rabbit reticulocyte lysates (RRL) has been postulated to partially explain the inefficient translation of poliovirus RNA in this system. To further characterize La activity in translation and to identify other potential limiting factors, we assayed the ability of La protein as well as purified initiation factors, eIF-2, guanine nucleotide exchange factor (GEF), eIF-4A, eIF-4B, eIF-4F, and eIF-3, to stimulate the synthesis of P1, the capsid precursor protein, in poliovirus type 1 (Mahoney) RNA-programmed RRL. Of the proteins tested, only La, GEF, and to some extent eIF-2 stimulated the synthesis of P1. The enhanced translation of P1 in response to La occurred concomitantly with the inhibition of synthesis of most aberrant polypeptides, resulting from initiation in the middle of the genome. Deletion of the carboxy-terminal half (214 amino acids) of La did not decrease its binding to the poliovirus 5' untranslated region but abrogated the stimulatory and correcting activity in translation. In contrast to La, GEF and eIF-2 stimulated the overall translation and increased the synthesis of aberrant products as well as P1. Neither La, GEF, nor any other factor stimulated translation of encephalomyocarditis virus RNA in RRL. The implications of these findings for the mechanism of internal translation initiation on picornavirus RNAs are discussed.  相似文献   

14.
15.
运用反转录-PCR技术,从黑色素瘤细胞中扩增出t—PA cDNA 5′末端460bp的片段,再经重组获得含完整5′-UTR的t—PA cDNA克隆,在兔网织红细胞裂解物中翻译和COS-7细胞中表达发现,t—PA mRNA 5′—UTR对其表达有明显的抑制作用。将t—PA mRNA 5′—UTR用苜蓿病毒RNA 5′—UTR替换,使t—PA的表达水平提高3-7倍,mRNA翻译起始区二级结构分析结果表明,翻译起始区的二级结构与t-PA的表达水平有关。  相似文献   

16.
17.
Synthetic RNAs (poly AUG, poly UG, poly AUC, and poly AG) were observed to inhibit initiation of translation of maturation protein and coat protein cistrons on f2 phage RNA. The former was affected more significantly than the latter by poly AUG and poly UG, whereas the latter by poly AUC. Poly AG markedly blocked initiation of both cistrons at the same level. The synthetic RNAs interfered with the binding of f2 RNA to ribosomes. The results suggested that each cistron of mRNA may have a specific initiation signal.  相似文献   

18.
Polyadenylation stimulates translation of capped eukaryotic mRNAs and those carrying picornaviral internal ribosome entry segments (IRESes) in vivo. Rabbit reticulocyte lysates (RRL) reproduce poly(A)-mediated translation stimulation in vitro after partial depletion of ribosomes and ribosome-associated factors. Here, we have evaluated the effects of varying different parameters (extent of extract depletion, cleavage of eIF4G, concentrations of KCl, MgCl2 and programming mRNA) on IRES-driven translation efficiency and poly(A)-dependency in ribosome-depleted RRL. For comparison, the study included a standard capped, polyadenylated mRNA. Dramatic differences were observed in the abilities of the different IRESes to direct translation in ribosome-depleted extracts. While the hepatitis A virus IRES was incapable of driving translation in physiological conditions in depleted RRL, mRNAs carrying the foot-and-mouth disease virus and hepatitis C virus IRESes were translated significantly better than a standard cellular mRNA in the same conditions. Indeed, the capacities of these IRESes to direct translation in ribosome-depleted RRL were similar to those reported previously in certain cell lines. Both the abilities of the IRESes to drive translation and their individual salt optima in ribosome-depleted extracts suggest that these elements have dramatically different affinities for some component(s) of the canonical translation machinery. Finally, using poliovirus as an example, we show that the ribosome-depleted system is well suited to the study of the translational capacity of naturally occurring IRES variants.  相似文献   

19.
Translation of most eukaryotic mRNAs involves the synergistic action between the 5′ cap structure and the 3′ poly(A) tail at the initiation step. The poly(A) tail has also been shown to stimulate translation of picornavirus internal ribosome entry sites (IRES)-directed translation. These effects have been attributed principally to interactions between eIF4G and poly(A)-binding protein (PABP) but also to the participation of PABP in other steps during translation initiation. As the rabbit reticulocyte lysate (RRL) does not recapitulate this cap/poly(A) synergy, several systems based on cellular cell-free extracts have been developed to study the effects of poly(A) tail in vitro but they generally exhibit low translational efficiency. Here, we describe that the non-nuclease-treated RRL (untreated RRL) is able to recapitulate the effects of poly(A) tail on translation in vitro. In this system, translation of a capped/polyadenylated RNA was specifically inhibited by either Paip2 or poly(rA), whereas translation directed by HCV IRES remained unaffected. Moreover, cleavage of eIF4G by FMDV L protease strongly stimulated translation directed by the EMCV IRES, thus recapitulating the competitive advantage that the proteolytic processing of eIF4G confers to IRES-driven RNAs.  相似文献   

20.
Expression vectors that yield mono-, di-, and tricistronic mRNAs upon transfection of COS-1 cells were used to assess the influence of the 5' nontranslated regions (5'NTRs) on translation of reporter genes. A segment of the 5'NTR of encephalomyocarditis virus (EMCV) allowed translation of an adjacent downstream reporter gene (CAT) regardless of its position in the mRNAs. A deletion in the EMCV 5'NTR abolishes this effect. Poliovirus infection completely inhibits translation of the first cistron of a dicistronic mRNA that is preceded by the capped globin 5'NTR, whereas the second cistron preceded by the EMCV 5'NTR is still translated. We conclude that the EMCV 5'NTR contains an internal ribosomal entry site that allows cap-independent initiation of translation. mRNA containing the adenovirus tripartite leader is also resistant to inhibition of translation by poliovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号