首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Developmental control of Arabidopsis seed oil biosynthesis   总被引:2,自引:0,他引:2  
Wang H  Guo J  Lambert KN  Lin Y 《Planta》2007,226(3):773-783
  相似文献   

10.
Zhang S  Wong L  Meng L  Lemaux PG 《Planta》2002,215(2):191-194
Expression of knotted1 ( kn1) and ZmLEC1, a maize homologue of the Arabidopsis LEAFY COTYLEDON1 ( LEC1) was studied using in situ hybridization during in vitro somatic embryogenesis of maize ( Zea mays L.) genotype Hi-II. Expression of kn1 was initially detected in a small group of cells (5-10) in the somatic embryo proper at the globular stage, in a specific region where the shoot meristem is initiating at the scutellar stage, and specifically in the shoot meristem at the coleoptilar stage. Expression of ZmLEC1 was strongly detected in the entire somatic embryo proper at the globular stage, gradually less in the differentiating scutellum at the scutellar and coleoptilar stages. The results of analyses show that the expression pattern of kn1 during in vitro somatic embryogenesis of maize is similar to that of kn1 observed during zygotic embryo development in maize. The expression pattern of ZmLEC1 in maize during in vitro development is similar to that of LEC1 in Arabidopsis during zygotic embryo development. These observations indicate that in vitro somatic embryogenesis likely proceeds through similar developmental pathways as zygotic embryo development, after somatic cells acquire competence to form embryos. In addition, based on the ZmLEC1 expression pattern, we suggest that expression of ZmLEC1 can be used as a reliable molecular marker for detecting early-stage in vitro somatic embryogenesis in maize.  相似文献   

11.
The transition from embryonic to vegetative growth marks an important developmental stage in the plant life cycle. The turnip (tnp) mutant was identified in a screen for modifiers of POLARIS expression, a gene required for normal root growth. Mapping and molecular characterization of tnp shows that it represents a gain-of-function mutant of LEAFY COTYLEDON1 (LEC1), due to a promoter mutation. This results in the ectopic expression of LEC1, but not of other LEC genes, in vegetative tissues. The LEC class of genes are known regulators of embryogenesis, involved in the control of embryonic cell identity by currently unknown mechanisms. Activation of the LEC-dependent pathway in tnp leads to the loss of hypocotyl epidermal cell marker expression and loss of SCARECROW expression in the endodermis, the ectopic accumulation of starch and lipids, and the up-regulation of early and late embryonic genes. tnp also shows partial deetiolation during dark growth. Penetrance of the mutant phenotype is strongly enhanced in the presence of exogenous auxin and sugars, but not by gibberellin or abscisic acid, and is antagonized by cytokinin. We propose that the role of LEC1 in embryonic cell fate control requires auxin and sucrose to promote cell division and embryonic differentiation.  相似文献   

12.
LEAFY COTYLEDON1 (LEC1) is an embryo defective mutation that affects cotyledon identity in Arabidopsis. Mutant cotyledons possess trichomes that are normally a leaf trait in Arabidopsis, and the cellular organization of these organs is intermediate between that of cotyledons and leaves from wild-type plants. We present several lines of evidence that indicate that the control of late embryogenesis is compromised by the mutation. First, mutant embryos are desiccation intolerant, yet embryos can be rescued before they dry to yield homozygous recessive plants that produce defective embryos exclusively. Second, although many genes normally expressed during embryonic development are active in the mutant, at least one maturation phase-specific gene is not activated. Third, the shoot apical meristem is activated precociously in mutant embryos. Fourth, in mutant embryos, several genes characteristic of postgerminative development are expressed at levels typical of wild-type seedlings rather than embryos. We conclude that postgerminative development is initiated prematurely and that embryonic and postgerminative programs operate simultaneously in mutant embryos. The pleiotropic effects of the mutation indicate that the LEC1 gene plays a fundamental role in regulating late embryogenesis. The role of LEC1 and its relationship to other genes involved in controlling late embryonic development are discussed.  相似文献   

13.
Tan H  Yang X  Zhang F  Zheng X  Qu C  Mu J  Fu F  Li J  Guan R  Zhang H  Wang G  Zuo J 《Plant physiology》2011,156(3):1577-1588
The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.  相似文献   

14.
MicroRNAs regulate the timing of embryo maturation in Arabidopsis   总被引:4,自引:0,他引:4  
  相似文献   

15.
A member of the LEAFY COTYLEDON gene family encoding a HAP3 (heme activated protein 3) subunit of the CCAAT box-binding factor was isolated and termed as Citrus sinensis LEAFY COTYLEDON 1-LIKE (CsL1L). The deduced amino acid sequence shared a high similarity with LEAFY COTYLEDON 1-LIKE (L1L) in Arabidopsis thaliana, Phaseolus coccineus, Theobroma cacao, and Helianthus annuus. Quantitative RT-PCR results indicated that CsLIL was highly expressed in embryogenic callus, somatic embryos and immature seeds, but was rarely detected in non-embryogenic callus, vegetative and floral tissues. Ectopic expression of CsL1L in vegetative tissues could induce embryo-like structures, suggesting that CsL1L has the capability to transit cells from vegetative to embryogenic phase. Comparison of CsL1L expression in the newly formed and long-term subcultured embryogenic calli of W. Murcott tangor (C. sinensis × C. reticulata) and Hongkong kumquat (Fortunella hindsii Swingle) revealed that the potency of embryogenesis was related to the level of CsL1L expression. Sub-cellular localization analysis indicated that CsL1L was a nuclear protein in plant. A microsatellite in CsL1L was verified with polymorphism among the citrus species.  相似文献   

16.
植物LEC蛋白是NF-Y转录因子的一类B亚基,在植物胚状体形成过程中起重要作用。为了研究大麦小孢子体外培养形成胚状体的机理,本研究利用RACE技术在大麦中克隆了一个新的LEC基因,该基因cDNA全长为1004 bp,开放阅读框全长为597 bp,编码198个氨基酸,其蛋白1~59位氨基酸含有LEC结构域,命名为HvLEC1。HvLEC1在大麦的根、茎、叶和小孢子培养过程中均能表达,其中小孢子培养7 d时表达量最高,且HvLEC1在大麦品系BI04中的表达量比基19高,BI04愈伤产量也比基19高,表明HvLEC1表达量和愈伤产量有相关性,受盐胁迫后HvLEC1在大麦的根中快速上调表达,提示HvLEC1可能不仅参与小孢子胚状体发生,而且参与盐胁迫响应。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号