首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Codon context can affect translational efficiency by several molecular mechanisms. The base stacking interactions between a codon-anticodon complex and the neighboring nucleotide immediately 3' can facilitate translation by amber suppressors and the tRNA structure is also known to modulate the sensitivity to context. In this study the relative rates of aminoacyl-tRNA selection were measured at four sense codons (UGG, CUC, UUC and UCA), in all four 3' nucleotide contexts, through direct competition with a programmed frameshift at a site derived from the release factor 2 gene. Two codons (UGG and UUC) are read by tRNAs with small variable regions and their rates of aminoacyl-tRNA selection correlated with the potential base stacking strength of the 3' neighboring nucleotide. The other two codons (CUC and UCA) are read by tRNAs with large variable regions and the rate of selection of the aminoacyl-tRNAs in these cases varied little among the four contexts. Re-examination of published data on amber suppression also revealed an inverse correlation between context sensitivity and the size of the variable region. Collectively the data suggest that a large variable loop in a tRNA decreases the influence of the 3' context on tRNA selection, probably by strengthening tRNA-ribosomal interactions.  相似文献   

2.
UGA-specific nonsense suppressors from Escherichia coli K-12 were isolated and characterized. One of them (Su+UGA-11) was identified as a mutant of the prfB gene for the peptide releasing factor RF2. It appears that in this strain, while peptide release at sites of UGA mutations is retarded, the UGA stop codon is read through even in the absence of a tRNA suppressor, exhibiting a novel type of passive nonsense suppression. Three suppressors (Su+UGA-12, -16 and -34) were capable of restoring the streptomycin sensitive phenotype in resistant bacteria (strAr). Because of their drug-related phenotype, these are possibly mutations in the components of the ribosomal machinery, particularly those concerned with peptide release at UGA nonsense codons. A tRNA suppressor was also obtained which was derived from the tRNA(Trp) gene. In this strain, a long region between rrnC (84.5 min) and rrnB (89.5 min) was duplicated and one of the duplicated genes of tRNA(Trp) was mutated to the suppressor. The mechanism of UGA-suppression is discussed in terms of translation termination at the nonsense codon in both active and passive fashions.  相似文献   

3.
Recently, it was shown that wild-type glutamine tRNAs in yeast cause low-level nonsense suppression that can be enhanced by increasing glutamine tRNA gene copy number. In order to investigate glutamine tRNA behavior further, anticodon mutations that confer nonsense suppression were identified in yeast sup70 gene, which codes for glutamine tRNA(CAG). In this study we show that suppressors derived by mutation severely limit growth such that suppressor-bearing spores germinate but arrest cell division at approximately the 50 cell stage. Analysis of a sup70 deletion was used to establish that growth limitation results from loss of wild-type glutamine tRNA(CAG) function. By exploiting the growth inhibition of sup70 alleles, some exceptional codon recognition properties of glutamine tRNAs were revealed. Our results indicate that amber suppressor glutamine tRNA(UAG) can translate 5'-CAG-3' glutamine codons with low efficiency in the presence of an A/C mismatch at the first position of the codon, suggesting that reading may occur at a low level by a two-out-of-three reading mechanism. In addition, when glutamine tRNA(CAA) is over-expressed in vivo, it translates 5'-CAG-3' codons using a mechanism that resembles prokaryotic-like U/G wobble, which normally does not occur in yeast. Our studies also suggest that the yeast glutamine tRNA suppressors could potentially be exploited to express ciliated protozoan genes that normally contain internal 5'-UAG-3' and 5'-UAA-3' codons.  相似文献   

4.
Analyses of frameshifting at UUU-pyrimidine sites.   总被引:5,自引:1,他引:4       下载免费PDF全文
Others have recently shown that the UUU phenylalanine codon is highly frameshift-prone in the 3'(rightward) direction at pyrimidine 3'contexts. Here, several approaches are used to analyze frameshifting at such sites. The four permutations of the UUU/C (phenylalanine) and CGG/U (arginine) codon pairs were examined because they vary greatly in their expected frameshifting tendencies. Furthermore, these synonymous sites allow direct tests of the idea that codon usage can control frameshifting. Frameshifting was measured for these dicodons embedded within each of two broader contexts: the Escherichia coli prfB (RF2 gene) programmed frameshift site and a 'normal' message site. The principal difference between these contexts is that the programmed frameshift contains a purine-rich sequence upstream of the slippery site that can base pair with the 3'end of 16 S rRNA (the anti-Shine-Dalgarno) to enhance frameshifting. In both contexts frameshift frequencies are highest if the slippery tRNAPhe is capable of stable base pairing in the shifted reading frame. This requirement is less stringent in the RF2 context, as if the Shine-Dalgarno interaction can help stabilize a quasi-stable rephased tRNA:message complex. It was previously shown that frameshifting in RF2 occurs more frequently if the codon 3'to the slippery site is read by a rare tRNA. Consistent with that earlier work, in the RF2 context frameshifting occurs substantially more frequently if the arginine codon is CGG, which is read by a rare tRNA. In contrast, in the 'normal' context frameshifting is only slightly greater at CGG than at CGU. It is suggested that the Shine-Dalgarno-like interaction elevates frameshifting specifically during the pause prior to translation of the second codon, which makes frameshifting exquisitely sensitive to the rate of translation of that codon. In both contexts frameshifting increases in a mutant strain that fails to modify tRNA base A37, which is 3'of the anticodon. Thus, those base modifications may limit frameshifting at UUU codons. Finally, statistical analyses show that UUU Ynn dicodons are extremely rare in E.coli genes that have highly biased codon usage.  相似文献   

5.
Summary A spontaneous mutant was isolated that harbors a weak suppressing activity towards a UAG mutation, together with an inability to grow at 43° C in rich medium. The mutation is shown to be associated with an increased misreading of UAG at certain codon contexts and UAA. UGA, missense or frameshift mutations do not appear to be misread to a similar extent. The mutation gives an increased efficiency to several amber tRNA suppressors with-out increasing their ambiguity towards UAA. The ochre suppressors SuB and Su5 are stimulated in their reading of both UAG and UAA with preference for UAG. An opal suppressor is not affected. The effect of the mutation on the efficiency of amber and ochre suppressors is dependent on the codon context of the nonsense codon.The mutated gene (uar) has been mapped and found to be recessive both with respect to suppressor-enhancing ability as well as for temperature sensitivity. The phenotype is partly suppressed by the ochre suppressor SuC. It is suggested that uar codes for a protein, which is involved in translational termination at UAG and UAA stop codons.  相似文献   

6.
Effects on translation in vivo by modification deficiencies for 2-methylthio-N6-isopentenyladenosine (ms2i6A) (Escherichia coli) or 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine (ms2io6A) (Salmonella typhimurium) in tRNA were studied in mutant strains. These hypermodified nucleosides are present on the 3' side of the anticodon (position 37) in tRNA reading codons starting with uridine. In E. coli, translational error caused by tRNA was strongly reduced in the case of third-position misreading of a tryptophan codon (UGG) in a particular codon context but was not affected in the case of first-position misreading of an arginine codon (CGU) in another codon context. Misreading of UGA nonsense codons at two different positions was codon context dependent. The efficiencies of some tRNA nonsense suppressors were decreased in a tRNA-dependent manner. Suppressor tRNA which lacks ms2i6A-ms2io6A becomes more sensitive to codon context. Our results therefore indicate that, besides improving translational efficiency, ms2i6A37 and ms2io6A37 modifications in tRNA are also involved in decreasing the intrinsic codon reading context sensitivity of tRNA. Possible consequences for regulation of gene expression are discussed.  相似文献   

7.
Nonsense suppressor tRNAs have been suggested as potential agents for human somatic gene therapy. Recent work from this laboratory has described significant effects of 3' codon context on the efficiency of human nonsense suppressors. A rapid increase in the number of reports of human diseases caused by nonsense codons, prompted us to determine how the spectrum of mutation to either UAG, UAA or UGA codons and their respective 3' contexts, might effect the efficiency of human suppressor tRNAs employed for purposes of gene therapy. This paper presents a survey of 179 events of mutations to nonsense codons which cause human germline or somatic disease. The analysis revealed a ratio of approximately 1:2:3 for mutation to UAA, UAG and UGA respectively. This pattern is similar, but not identical, to that of naturally occurring stop codons. The 3' contexts of new mutations to stop were also analysed. Once again, the pattern was similar to the contexts surrounding natural termination signals. These results imply there will be little difference in the sensitivity of nonsense mutations and natural stop codons to suppression by nonsense suppressor tRNAs. Analysis of the codons altered by nonsense mutations suggests that efforts to design human UAG suppressor tRNAs charged with Trp, Gln, and Glu; UAA suppressors charged with Gln and Glu, and UGA suppressors which insert Arg, would be an essential step in the development of suppressor tRNAs as agents of human somatic gene therapy.  相似文献   

8.
Synonymous codons are unevenly distributed among genes, a phenomenon termed codon usage bias. Understanding the patterns of codon bias and the forces shaping them is a major step towards elucidating the adaptive advantage codon choice can confer at the level of individual genes and organisms. Here, we perform a large-scale analysis to assess codon usage bias pattern of pyrimidine-ending codons in highly expressed genes in prokaryotes. We find a bias pattern linked to the degeneracy of the encoded amino acid. Specifically, we show that codon-pairs that encode two- and three-fold degenerate amino acids are biased towards the C-ending codon while codons encoding four-fold degenerate amino acids are biased towards the U-ending codon. This codon usage pattern is widespread in prokaryotes, and its strength is correlated with translational selection both within and between organisms. We show that this bias is associated with an improved correspondence with the tRNA pool, avoidance of mis-incorporation errors during translation and moderate stability of codon-anticodon interaction, all consistent with more efficient translation.  相似文献   

9.
Base insertion mutations in the anticodons of two different Escherichia coli tRNAs have been isolated that allow suppression of a series of +1 frameshift mutations. Insertion of a U between positions 34 and 35 of tRNAGln1 or addition of a G between positions 36 and 37 of tRNA(Lys) expand the anticodons of both tRNAs similarly to 3'-GUUU(-5') and allow decoding of complementary 5'-CAAA(-3') quadruplets. Analysis of the suppressed mRNA sequences suggests that suppression occurs by pairing of the expanded anticodons to all four bases of the complementary, quadruplet codon. The tRNA Gln mutants are identical to the sufG class of frameshift suppressors isolated both in Salmonella enterica serovar Typhimurium and E. coli by Kohno and Roth and previously thought to affect tRNA(Lys).  相似文献   

10.
We developed a bacterial genetic system based on translation of the his operon leader peptide gene to determine the relative speed at which the ribosome reads single or multiple codons in vivo. Low frequency effects of so-called “silent” codon changes and codon neighbor (context) effects could be measured using this assay. An advantage of this system is that translation speed is unaffected by the primary sequence of the His leader peptide. We show that the apparent speed at which ribosomes translate synonymous codons can vary substantially even for synonymous codons read by the same tRNA species. Assaying translation through codon pairs for the 5′- and 3′- side positioning of the 64 codons relative to a specific codon revealed that the codon-pair orientation significantly affected in vivo translation speed. Codon pairs with rare arginine codons and successive proline codons were among the slowest codon pairs translated in vivo. This system allowed us to determine the effects of different factors on in vivo translation speed including Shine-Dalgarno sequence, rate of dipeptide bond formation, codon context, and charged tRNA levels.  相似文献   

11.
We have used site-specific mutagenesis to change the anticodon of a Xenopus laevis tyrosine tRNA gene so that it would recognize ochre codons. This tRNA gene is expressed when amplified in monkey cells as part of a SV40 recombinant and efficiently suppresses termination at both the ochre codon separating the adenovirus 2 hexon gene from a 23-kd downstream gene and the ochre codon at the end of the NS1 gene of influenza virus A/Tex/1/68. Termination at an amber codon of a NS1 gene of another influenza virus strain was not suppressed by the (Su+) ochre gene suggesting that in mammalian cells amber codons are not recognized by ochre suppressor tRNAs. Finally, microinjection into mammalian cells of both (Su+) ochre tRNA genes and selectible genes containing ochre nonsense mutations gives rise to colonies under selective conditions. We conclude that it should be possible to isolate a wide assortment of mammalian cell lines with ochre suppressor activity.  相似文献   

12.
The nucleotide frequencies 5' and 3' to the sense codons in highly and weakly expressed genes have been investigated by the chi-squares method. A comparison between the experimental and computer-generated random nucleotide sequences (in which each codon is substituted by a random synonymous one) was made. It was shown that the choice of a particular codon among the synonymous ones in a given position of the gene depends on the three nucleotides 3' and 5' adjacent to the codon in highly expressed genes (the triplet 3' and a single nucleotide 5' to the codons in weakly expressed genes). Concrete patterns for the preferable choice of synonymous codons depending on their contexts are presented. It is suggested that these constraints are related to the efficiency of messenger translation. The constraints on the amino acid sequences of encoded proteins also lead to statistically significant bases in nucleotide frequencies around the sense codons. The biological role of these constraints is discussed.  相似文献   

13.
In a lacZ expression vector (pMC1403Plac), all 64 codons were introduced immediately 3' from the AUG initiation codon. The expression of the second codon variants was measured by immunoprecipitation of the plasmid-coded fusion proteins. A 15-fold difference in expression was found among the codon variants. No distinct correlation could be made with the level of tRNA corresponding to the codons and large differences were observed between synonymous codons that use the same tRNA. Therefore the effect of the second codon is likely to be due to the influence of its composing nucleotides, presumably on the structure of the ribosomal binding site. An analysis of the known sequences of a large number of Escherichia coli genes shows that the use of codons in the second position deviates strongly from the overall codon usage in E. coli. It is proposed that codon selection at the second position is not based on requirements of the gene product (a protein) but is determined by factors governing gene regulation at the initiation step of translation.  相似文献   

14.
Expression of the RNA replicase domain of tobacco mosaic virus (TMV) and certain protein-coding regions in other plant viruses, is mediated by translational readthrough of a leaky UAG stop codon. It has been proposed that normal tobacco tyrosine tRNAs are able to read the UAG codon of TMV by non-conventional base-pairing but recent findings that stop codons can also be bypassed as a result of extended translocational shifts (tRNA hopping) have encouraged a re-examination. In light of the alternatives, we investigated the sequences flanking the leaky UAG codon using an in vivo assay in which bypass of the stop codon is coupled to the transient expression of beta-glucuronidase (GUS) reporter genes in tobacco protoplasts. Analysis of GUS constructions in which codons flanking the stop were altered allowed definition of the minimal sequence required for read through as UAG-CAA-UUA. The effects of all possible single-base mutations in the codons flanking the stop indicated that 3' contexts of the form CAR-YYA confer leakiness and that the 3' context permits read through of UAA and UGA stop codons as well as UAG. Our studies demonstrate a major role for the 3' context in the read through process and do not support a model in which teh UAG is bypassed exclusively as a result of anticodon-codon interactions. No evidence for tRNA hopping was obtained. The 3' context apparently represents a unique sequence element that affects translation termination.  相似文献   

15.
Growth rate dependence of transfer RNA abundance in Escherichia coli.   总被引:14,自引:1,他引:13       下载免费PDF全文
We have tested the predictions of a model that accounts for the codon preferences of bacteria in terms of a growth maximization strategy. According to this model the tRNA species cognate to minor and major codons should be regulated differently under different growth conditions: the isoacceptors cognate to major codons should increase at fast growth rates while those cognate to minor codons should decrease at fast growth rates. We have used a quantitative Northern blotting technique to measure the abundance of the methionine and the leucine isoacceptor families over growth rates ranging from 0.5 to 2.1 doublings per hour. Five tRNA species that are cognate to major codons (tRNA(eMet), tRNA(1fMet), tRNA(2fMet), tRNA(1Leu) and tRNA(3Leu) increase both as a relative fraction of total tRNA and in absolute concentration with increasing growth rates. Three tRNA species that are cognate to minor codons (tRNA(2Leu), tRNA(4Leu) and tRNA(5Leu) decrease as a relative fraction of total RNA and in absolute concentration with increasing growth rates. These data suggest that the abundances of groups of tRNA species are regulated in different ways, and that they are not regulated simply according to isoacceptor specificity. In particular, the data support the growth optimization model for codon bias.  相似文献   

16.
Insects, the most biodiverse taxonomic group, have high AT content in their mitochondrial genomes. Although codon usage tends to be AT-rich, base composition and codon usage of mitochondrial genomes may vary among taxa. Thus, we compare base composition and codon usage patterns of 49 insect mitochondrial genomes. For protein coding genes, AT content is as high as 80% in the Hymenoptera and Lepidoptera and as low as 72% in the Orthopotera. The AT content is high at positions 1 and 3, but A content is low at position 2. A close correlation occurs between codon usage and tRNA abundance in nuclear genomes. Optimal codons can pair well with the antr codons of the most abundant tRNAs. One tRNA gene translates a synonymous codon family in vertebrate mitochondrial genomes and these tRNA anticodons can pair with optimal codons. However, optimal codons cannot pair with anticodons in mtDNA ofCochiiomyia hominivorax (Dipteral: CaLliphoridae). Ten optimal codons cannot pair with tRNA anticodons in all 49 insect mitochondrial genomes; non-optimal codon-anticodon usage is common and codon usage is not influenced by tRNA abundance.  相似文献   

17.
Effects of surrounding sequence on the suppression of nonsense codons   总被引:61,自引:0,他引:61  
Using a lacI-Z fusion system, we have determined the efficiency of suppression of nonsense codons in the I gene of Escherichia coli by assaying beta-galactosidase activity. We examined the efficiency of four amber suppressors acting on 42 different amber (UAG) codons at known positions in the I gene, and the efficiency of a UAG suppressor at 14 different UGA codons. The largest effects were found with the amber suppressor supE (Su2), which displayed efficiencies that varied over a 35-fold range, and with the UGA suppressor, which displayed a 170-fold variation in efficiency. Certain UGA sites were so poorly suppressed (less than 0.2%) by the UGA suppressor that they were not originally detected as nonsense mutations. Suppression efficiency can be correlated with the sequence on the 3' side of the codon being suppressed, and in many cases with the first base on the 3' side. In general, codons followed by A or G are well suppressed, and codons followed by U or C are poorly suppressed. There are exceptions, however, since codons followed by CUG or CUC are well suppressed. Models explaining the effect of the surrounding sequence on suppression efficiency are considered in the Discussion and in the accompanying paper.  相似文献   

18.
Naturally occurring tRNA mutants are known that suppress +1 frameshift mutations by means of an extended anticodon loop, and a few have been used in protein mutagenesis. In an effort to expand the number of possible ways to uniquely and efficiently encode unnatural amino acids, we have devised a general strategy to select tRNAs with the ability to suppress four-base codons from a library of tRNAs with randomized 8 or 9 nt anticodon loops. Our selectants included both known and novel suppressible four-base codons and resulted in a set of very efficient, non-cross-reactive tRNA/four-base codon pairs for AGGA, UAGA, CCCU and CUAG. The most efficient four-base codon suppressors had Watson-Crick complementary anticodons, and the sequences of the anticodon loops outside of the anticodons varied with the anticodon. Additionally, four-base codon reporter libraries were used to identify "shifty" sites at which +1 frameshifting is most favorable in the absence of suppressor tRNAs in Escherichia coli. We intend to use these tRNAs to explore the limits of unnatural polypeptide biosynthesis, both in vitro and eventually in vivo. In addition, this selection strategy is being extended to identify novel five- and six-base codon suppressors.  相似文献   

19.
The modified nucleoside 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine (ms2io6A) is present immediately to the 3' side of the anticodon (position 37) in tRNAs that read codons starting with uridine and hence include amber (UAG) suppressor tRNAs. We have used strains of Salmonella typhimurium that differ only in their ability to synthesize ms2io6A in order to determine specifically how this modified nucleoside influences the efficiency of amber suppression in two codon contexts differing by only which base is 3' of the codon. The results show that the presence of the modified nucleoside ms2io6A not only improves the efficiency of the suppressor tRNAs but also allows them to distinguish between at least two bases 3' of the codon. Thus, the presence of ms2io6A reduces the intrinsic codon context sensitivity of the tRNA and specifically counteracts an unfavourable nucleotide on the 3' side of the codon. The possible codon-anticodon interactions responsible for this effect are discussed.  相似文献   

20.
Amber, ochre and opal suppressor tRNA genes have been generated by using oligonucleotide directed site-specific mutagenesis to change one or two nucleotides in a human serine tRNA gene. The amber and ochre suppressor (Su+) tRNA genes are efficiently expressed in CV-1 cells when introduced as part of a SV40 recombinant. The expressed amber and ochre Su+ tRNAs are functional as suppressors as demonstrated by readthrough of the amber codon which terminates the NS1 gene of an influenza virus or the ochre codon which terminates the hexon gene of adenovirus, respectively. Interestingly, several attempts to obtain the equivalent virus stock of an SV40 recombinant containing the opal suppressor tRNA gene yielded virus lacking the opal suppressor tRNA gene. This suggests that expression of an efficient opal suppressor derived from a human serine tRNA gene is highly detrimental to either cellular or viral processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号