首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant–pollinator interactions provide highly important ecological functions, and are influenced by floral nectar characteristics. The night blooming Datura ferox is an excellent model to test general hypotheses on the relationship between nectar traits (e.g., nectar secretion patterns, nectar chemical composition), pollinators and reproductive success for invasive, weedy species in highly modified ecosystems as crop fields. We hypothesized an adjustment between nectar composition and secretion dynamics through flower anthesis and the activity and requirements of nocturnal pollinators. Nectar chemical analyses showed low quantities of amino acids and lipids, phenolics, and alkaloids were not detected. D. ferox showed sucrose-dominant nectar with comparable amount of hexoses. Sugar proportions did not vary between populations or during flowering season. Most nectar is secreted before flower opening. Nectar resorption was detected at the end of anthesis. Experimentally drained flowers of both populations increased nectar production up to 50 % in the total amount of sugar per flower compared to control flowers. Nectar standing crop was relatively constant during the flowering season, but differences were detected between populations. Nectar traits of D. ferox would be favoring cross-pollination and maintaining seed production of this weed, since recently open flowers display a higher amount of nectar and they can renew nectar after a pollinator visit or reabsorb it at the end of anthesis. This nectar source may be important for native pollinators considering that human-induced forest fragmentation is related with the impoverishment of native flora from agro-ecosystems.  相似文献   

2.
We studied a population of the distylousPalicourea padifolia (Rubiaceae) in a cloud forest remnant near Xalapa City, Veracruz, México to explore possible asymmetries between floral morphs in the attractiveness to pollinators, seed dispersers, nectar robbers, floral parasites, and herbivores. We first assessed heterostyly and reciprocal herkogamy by measuring floral attributes such as corolla length (buds and open flowers), style and anther heights, stigma and stamen lengths and the distance between the anther tip to the stigma lobe. We then estimated floral and fruit attributes such as flower size, anther height, number and size of pollen grains, fruit size, seed size, nectar production, and flower and fruit standing crops to assess differences between floral morphs in attracting and effectively using mutualistic pollinators and seed dispersers. Also, floral parasitism and nectar robbing were assessed in this study as a measure of flower attractiveness to antagonists. The system seems to conform well to classical heterostyly (e.g. reciprocal stamen/style lengths, pollen and anther dimorphism, intramorph incompatibility) yet, there were several tantalizing differences observed between pin and thrum morphs. Thrum flowers have longer corollas and larger but fewer pollen grains than pin flowers. Both morphs produced the same total number of inflorescences, developed the same number of buds, and opened the same number of flowers per inflorescence during the flowering season. Nectar production and sugar concentration were similar between floral morphs but the reward was not offered symmetrically to floral visitors throughout the day. Nectar concentration was higher in pin flowers in the afternoon. The numbers of developing, fully developed, and ripe fruits were the same between floral morphs, however, fruits and seeds were larger than those of thrums. The incidence of fly larvae was higher among thrum flowers and damage by nectar robbing was the same between floral morphs. Fruit abortion patterns of flowers manually pollinated suggest intra-morph sterility (self and intramorph incompatibility). There were no differences between morphs in fruit and seed set per flower following legitimate pollination although thrums were more leaky than the pins (intramorph compatibility).  相似文献   

3.
《Flora》2006,201(5):353-364
Nectar production and flower visitors of the night-flowering Saponaria officinalis L. (Caryophyllaceae) were studied in relation to the reproductive success. Nectar production was worthwhile for nocturnal flower visitors. Nectar standing crop was about 267 μg sugar per flower, and comparison of nectar offering of covered and freely exposed flowers revealed that main nectar secretion time is mainly during the night up to the morning hours. In both covered and freely exposed flowers nectar volumes decreased over the day. In covered flowers, nectar volume, sugar concentration, and sugar amount per flower increased up to the third day; in older flowers sugar secretion ceased. In 1996 Autographa gamma (Noctuidae) was the exclusive nocturnal flower visitor, but pollen transfer experiments proved that A. gamma (Noctuidae) is a very ineffective pollinator of S. officinalis. In 1999 up to 50% of the observed visitors were Sphingidae, which resulted in a significantly higher seed set. Fruit set was constantly high independent of pollinator availability. In the nectar manipulation experiments seed set was highest in non-emasculated flowers filled with unnaturally high concentrated sucrose solutions. Differences to seed set on stalks treated with a sucrose solution mimicking naturally concentrated nectar were significant. Lowest fruit and seed set were found on inflorescences with emasculated flowers filled with a sucrose solution mimicking naturally concentrated nectar.  相似文献   

4.
The pollination biology of the common shrub Pultenaea villosa Willd. was examined in a subtropical dry sclerophyll forest in eastern Australia. We determined floral phenology and morphology, the timing of stigma receptivity and anther dehiscence, nectar availability, the plant breeding system, and flower visitors. The shrub's flowers are typical zygomorphic pea flowers with hidden floral rewards and reproductive structures. These flowers require special manipulation for insect access. A range of insects visited the flowers, although bees are predicted to be the principle pollinators based on their frequency on the flowers and their exclusive ability to operate the wing and keel petals to access the reproductive structures. Nectar and pollen are offered as rewards and were actively collected by bees. Nectar is offered to visitors in minute amounts at the base of the corolla. In Toohey Forest, P. villosa flowers in spring and is the most abundant floral resource in the understory of the forest at this time. The breeding system experiment revealed that P. villosa requires outcrossing for high levels of seed set and that the overlap of stigma receptivity and pollen dehiscence within the flower suggests the potential for self-incompatibility.  相似文献   

5.

Background and Aims

The period between the beginning of anthesis and flower senescence modulates the transport of pollen by pollinators among conspecific flowers, and its length may therefore influence reproductive success. This study evaluated whether floral longevity favours pollen removal from the anthers over fecundity (seed set) in an ornithophilous species that does not undergo pollen limitation.

Methods

Field investigations were conducted on floral longevity, nectar production, pollinator behaviour, and variations in fruit set (FS), mean number of seeds per fruit (MSF) and pollen removal by hummingbirds (PR) during the anthesis of Salvia sellowiana in south-east Brazil.

Key Results

Anthesis of flowers exposed to pollinators lasted 4 d, as well as on flowers with pollen removed from the anthers or deposited on the stigma. The longevity of bagged flowers was significantly higher (approx. 9 d). FS and PR reached 87·2 and 90 %, respectively, in natural conditions. PR increased gradually over the period of anthesis; however, FS and MSF reached their maxima in the first hours of anthesis. Nectar production was continuous, but the secretion rate was reduced after pollination. The removal of nectar from non-pollinated flowers stimulated its production.

Conclusions

The longevity of anthesis in S. sellowiana seems to be related to the mechanism of gradual dispensing of pollen, resulting in greater male reproductive success. This is in agreement with the pollen-donation hypothesis. The small number of ovules (four) of S. sellowiana and the high frequency and the foraging mode of its pollinators may favour the selection for floral longevity driven by male fitness in this system.  相似文献   

6.
In this paper we examine some ecological consequences and phenotypic correlates of flower size variation in wild radish, Raphanus sativus. Mean corolla diameter varied significantly among individuals within natural populations of R. sativus in California. On the average, almost 40% of flower biomass was allocated to corolla tissue. In field experiments, pollinator visitation increased significantly with corolla size. Large flowers also accumulated more nectar when pollinators were excluded from plants. In three populations, corolla size was positively correlated with allocation to pollen per flower (either anther weight or pollen grain number), but there was usually no phenotypic relationship between corolla size and several measures of female allocation (ovule number per flower, proportion fruit set, and total seed mass per fruit). Plants growing in the field produced fewer large flowers per unit of stem, and stem biomass was negatively related to corolla size for plants grown under controlled greenhouse conditions. Male and female fitness may covary differently with allocation to attractive floral features in species such as R. sativus, where seed production is often limited by resources rather than by pollen.  相似文献   

7.
Nectar spurs have an important role in floral evolution and plant–pollinator coadaptation. The flowers of some species possess spurs curving into a circle. However, it is unclear whether spur circle diameter is under direct selection pressure from different sources, such as pollinators and nectar robbers. In this study, we quantified selection on some floral traits, such as spur circle diameter in Impatiens oxyanthera (Balsaminaceae) using phenotypic selection analysis and compared the relative importance of pollinators and nectar robbers as selective agents using mediation analysis. The study showed that pollinators caused significant selection on corolla length, spur curvature and spur circle diameter while nectar robbers only imposed strong selection on spur circle diameter. Pollinators favored flowers with large corolla, curly spurs and large spur circle while nectar robbers preferred flowers with small spur circle. More pollinator visits resulted in higher female reproductive success, while robbery reduced female fitness. Conflicting selection on spur traits from pollinators and nectar robbers was not found. Mediation analysis showed that selection on floral traits through nectar robbing was stronger than selection through pollination. The results suggested that pollinators and nectar robbers jointly mediated the directional selection for large spur circle, and nectar robbers caused stronger selection than pollinators on floral traits.  相似文献   

8.

Background and Aims

Floral rewards may be associated with certain morphological floral traits and thus act as underlying factors promoting selection on these traits. This study investigates whether some traits that are under pollinator-mediated selection (flower number, stalk height, corolla diameter, corolla tube length and corolla tube width) in the Mediterranean herb E. mediohispanicum (Brassicaceae) are associated with rewards (pollen and nectar).

Methods

During 2005 the phenotypic traits and the visitation rate of the main pollinator functional groups were quantified in 720 plants belonging to eight populations in south-east Spain, and during 2006 the same phenotypic traits and the reward production were quantified in 400 additional plants from the same populations.

Key Results

A significant correlation was found between nectar production rate and corolla tube length, and between pollen production and corolla diameter. Visitation rates of large bees and butterflies were significantly higher in plants exhibiting larger flowers with longer corolla tubes.

Conclusions

The association between reward production and floral traits may be a factor underlying the pattern of visitation rate displayed by some pollinators.Key words: Erysimum, floral traits, nectar, pollen, pollinator visitation rate, reward  相似文献   

9.
  • Analyses of resource presentation, floral morphology and pollinator behaviour are essential for understanding specialised plant‐pollinator systems. We investigated whether foraging by individual bee pollinators fits the floral morphology and functioning of Blumenbachia insignis, whose flowers are characterised by a nectar scale‐staminode complex and pollen release by thigmonastic stamen movements.
  • We described pollen and nectar presentation, analysed the breeding system and the foraging strategy of bee pollinators. We determined the nectar production pattern and documented variations in the longevity of floral phases and stigmatic pollen loads of pollinator‐visited and unvisited flowers.
  • Bicolletes indigoticus (Colletidae) was the sole pollinator with females revisiting flowers in staminate and pistillate phases at short intervals, guaranteeing cross‐pollen flow. Nectar stored in the nectar scale‐staminode complex had a high sugar concentration and was produced continuously in minute amounts (~0.09 μl·h?1). Pushing the scales outward, bees took up nectar, triggering stamen movements and accelerating pollen presentation. Experimental simulation of this nectar uptake increased the number of moved stamens per hour by a factor of four. Flowers visited by pollinators received six‐fold more pollen on the stigma than unvisited flowers, had shortened staminate and pistillate phases and increased fruit and seed set.
  • Flower handling and foraging by Bicolletes indigoticus were consonant with the complex flower morphology and functioning of Blumenbachia insignis. Continuous nectar production in minute quantities but at high sugar concentration influences the pollen foraging of the bees. Partitioning of resources lead to absolute flower fidelity and stereotyped foraging behaviour by the sole effective oligolectic bee pollinator.
  相似文献   

10.
The relationship between plant and pollinator is considered as the mutualism because plant benefits from the pollinator’s transport of male gametes and pollinator benefits from plant’s reward. Nectar robbers are frequently described as cheaters in the plant-pollinator mutualism, because it is assumed that they obtain a reward (nectar) without providing a service (pollination). Nectar robbers are birds, insects, or other flower visitors that remove nectar from flowers through a hole pierced or bitten in the corolla. Nectar robbing represents a complex relationship between animals and plants. Whether plants benefit from the relationship is always a controversial issue in earlier studies. This paper is a review of the recent literatures on nectar robbing and attempts to acquire an expanded understanding of the ecological and evolutionary roles that robbers play. Understanding the effects of nectar robbers on the plants that they visited and other flower visitors is especially important when one considers the high rates of robbing that a plant population may experience and the high percentage of all flower visitors that nectar robbers make to some species. There are two standpoints in explaining why animals forage on flowers and steal nectar in an illegitimate behavior. One is that animals can only get food in illegitimate way because of the mismatch of the morphologies of animals’ mouthparts and floral structure. The other point of view argues that nectar robbing is a relatively more efficient, thus more energy-saving way for animals to get nectar from flowers. This is probably associated with the difficulty of changing attitudes that have been held for a long time. In the case of positive effect, the bodies of nectar robbers frequently touch the sex organs of plants during their visiting to the flowers and causing pollination. The neutral effect, nectar robbers’ behavior may destruct the corollas of flowers, but they neither touch the sex organs nor destroy the ovules. Their behavior does not affect the fruit sets or seed sets of the hosting plant. Besides the direct impacts on plants, nectar robbers may also have an indirect effect on the behavior of the legitimate pollinators. Under some circumstances, the change in pollinator behavior could result in improved reproductive fitness of plants through increased pollen flow and out-crossing. __________ Translated from Acta phytoecologiaca Sinica, 2006, 30(4): 695–702 [译自: 植物生态学报]  相似文献   

11.
Nectar is the most common floral reward that plants produce to attract pollinators. To determine the effect of nectar production on hawkmoth behavior, pollen movement, and reproductive success in Mirabilis multiflora, I manipulated nectar volumes and observed the subsequent foraging behavior of the hawkmoth Hyles lineata and the resulting pollen movement patterns. Individual hawkmoths visited significantly more flowers on plants with more nectar. The increase in flower visits significantly increased pollen deposition on stigmas and pollen removal from anthers when nectar volume was raised to twice the highest level found in nature. As hawkmoths visited flowers consecutively on a plant, the proportion of self pollen deposited on stigmas increased significantly and rapidly. Based on simulated hawkmoth visits, seed set was significantly reduced for flowers later in a visit sequence. A simple model combining these results predicts that the form of selection on nectar production varies depending on pollinator abundance. Using a multiple regression analysis a nearly significant (P < 0.08) effect of stabilizing selection was detected during a single season as predicted by the model for the prevailing hawkmoth abundance. Although increased nectar production may indirectly affect plant fitness by reducing resources available for other plant functions, the direct effect of high nectar production on pollinator behavior and self pollination may generally limit floral nectar production.  相似文献   

12.
Reward partitioning and replenishment and specific mechanisms for pollen presentation are all geared towards the maximization of the number of effective pollinator visits to individual flowers. An extreme case of an apparently highly specialized plant–pollinator interaction with thigmonastic pollen presentation has been described for the morphologically complex tilt‐revolver flowers of Caiophora arechavaletae (Loasaceae) pollinated by oligolectic Bicolletes pampeana (Colletidae, Hymenoptera). We studied the floral biology of Nasa macrothyrsa (Loasaceae) in the field and in the glasshouse, which has very similar floral morphology, but is pollinated by polylectic Neoxylocopa bees (Apidae, Hymenoptera). We investigated the presence of thigmonastic anther presentation, visitor behaviour (pollinators and nectar robbers), co‐ordination of pollinator visits with flower behaviour and the presence of nectar replenishment. The aim of this study was to understand whether complex flower morphology and behaviour can be explained by a specialized pollination syndrome, or whether alternative explanations can be offered. The results showed that Nasa macrothyrsa has thigmonastic pollen presentation, i.e. new pollen is rapidly (<< 10 min) presented after a pollinator visit. Nectar secretion is independent of removal and averages 7–14 µL h–1. The complex flowers, however, fail to exclude either native (hummingbirds) or introduced (honeybees) nectar robbers, nor does polylectic Neoxylocopa actively collect the pollen presented. The findings do not support a causal link between complex flower morphology and functionality in Loasaceae and a highly specialized pollination. Rapid pollen presentation is best explained by the pollen presentation theory: the large proportion of pollinators coming shortly after a previous visit find little nectar and are more likely to move on to a different plant. The rapid presentation of pollen ensures that all these valuable ‘hungry pollinators’ are dusted with small pollen loads, thus increasing the male fitness of the plant by increasing the likelihood of siring outcrossed offspring. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 124–131.  相似文献   

13.
荆条花蜜腺发育解剖学研究   总被引:2,自引:0,他引:2  
荆条(Vitex chinensis Mill.)花蜜腺属于淀粉型子房蜜腺,呈圆筒状环绕于子房的基部。蜜腺外观上无特殊结构,表面有。由分泌表皮和泌蜜组织组成,包括分泌表皮、气孔器、泌蜜薄壁组织和维管束。密腺和子房壁起源相同。花蕾膨大期,泌蜜组织细胞中产生大液泡;露冠期,泌蜜组织中形成维管束;花蕾初放期,分泌表皮细胞分化形成气孔器,无气孔下室,淀粉粒的积累在此期达到高峰;盛花期,蜜腺中已无淀粉粒,密  相似文献   

14.
在动植物的相互关系中,盗蜜行为被认为是一种不同于普通传粉者的非正常访花行为。动物之所以要采取这种特殊的觅食策略,有假说认为是由访花者的口器和植物的花部形态不匹配造成的,也有认为是盗蜜行为提高了觅食效率从而使盗蜜者受益。在盗蜜现象中,盗蜜者和宿主植物之间的关系是复杂的。盗蜜对宿主植物的影响尤其是对其繁殖适合度的影响归纳起来有正面、负面以及中性3类。与此同时,盗蜜者的种类, 性别及其掠食行为差异不仅与生境因素密切相关,而且会对宿主植物的繁殖成功产生直接或间接的影响。另外,盗蜜者的存在无疑对其它正常传粉者的访花行为也产生一定的影响,从而间接地影响宿主植物的繁殖成功, 而植物在花部形态上也出现了对盗蜜现象的适应性进化。作者认为, 盗蜜是短嘴蜂对长管型花最有效的一种掠食策略, 它不仅增加了盗蜜者对资源的利用能力, 而且由于盗蜜对宿主植物繁殖成功的不同的影响使其具有调节盗蜜者和宿主之间种群动态的作用, 两者的彼此适应是一种协同进化的结果。  相似文献   

15.
Nectaries and reproductive biology of Croton sarcopetalus (Euphorbiaceae)   总被引:1,自引:0,他引:1  
Flower morphology, nectary structure, nectar chemical composition, breeding system, floral visitors and pollination were analysed in Croton sarcopetalus , a diclinous-monoecious shrub from Argentina. Male flowers have five receptacular nectaries, with no special vascular bundles, that consist of a uniserial epidermis with stomata subtended by a secretory parenchyma. Female flowers bear two different types of nectaries: inner (IN) and outer (ON) floral nectaries. IN, five in all, are structurally similar to the nectaries of male flowers. The five ON are vascularized, stalked, and composed of secretory, column-shaped epidermal cells without stomata subtended by secretory and ground parenchyma. In addition, ON act as post-floral nectaries secreting nectar during fruit ripening. Extrafloral nectaries (EFN) are located on petioles, stipules and leaf margins. Petiolar EFN are patelliform, stalked and anatomically similar to the ON of the female flower. Nectar sampled from all nectary types is hexose dominant, except for the ON of the female flower at the post-floral stage that is sucrose dominant. The species is self-compatible, but geitonogamous fertilization is rarely possible because male and female flowers are not usually open at the same time in the same individual, i.e. there is temporal dioecism. Flowers are visited by 22 insect species, wasps being the most important group of pollinators. No significant differences were found in fruit and seed set between natural and hand pollinated flowers. This pattern indicates that fruit production in this species is not pollen/pollinator limited and is mediated by a wide array of pollinators.  相似文献   

16.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

17.
Nectar thieves may increase or decrease pollinator-mediated pollen flow and thus may have positive or negative effects on plant reproductive success. In temperate rainforests of South America, the hummingbird Sephanoides sephaniodes acts as both a pollinator and non-destructive nectar thief on Lapageria rosea. Although pollinators that also act as nectar thieves have the potential to significantly modify plant reproductive success, no previous study has addressed this. To determine how the mixed behaviour of S. sephanoides affects pollen flow, we experimentally exposed some flowers to nectar theft and excluded nectar thieves from other flowers. We then assessed pollen dispersal into the floral neighbourhood. Thieved flowers exported less pollen, but the pollen exported was transferred farther into the neighbourhood. Our findings indicate a trade-off between distance and amount of pollen flow.  相似文献   

18.
Inga species present brush‐type flower morphology allowing them to be visited by distinct groups of pollinators. Nectar features in relation to the main pollinators have seldom been studied in this genus. To test the hypothesis of floral adaptation to both diurnal and nocturnal pollinators, we studied the pollination ecology of Inga sessilis, with emphasis on the nectar secretion patterns, effects of sequential removals on nectar production, sugar composition and the role of diurnal and nocturnal pollinators in its reproductive success. Inga sessilis is self‐incompatible and pollinated by hummingbirds, hawkmoths and bats. Fruit set under natural conditions is very low despite the fact that most stigmas receive polyads with sufficient pollen to fertilise all ovules in a flower. Nectar secretion starts in the bud stage and flowers continually secreting nectar for a period of 8 h. Flowers actively reabsorbed the nectar a few hours before senescence. Sugar production increased after nectar removal, especially when flowers were drained during the night. Nectar sugar composition changed over flower life span, from sucrose‐dominant (just after flower opening, when hummingbirds were the main visitors) to hexose‐rich (throughout the night, when bats and hawkmoths were the main visitors). Diurnal pollinators contributed less than nocturnal ones to fruit production, but the former were more constant and reliable visitors through time. Our results indicate I. sessilis has floral adaptations, beyond the morphology, that encompass both diurnal and nocturnal pollinator requirements, suggesting a complementary and mixed pollination system.  相似文献   

19.
The self-incompatible flowers of Linaria vulgaris have developed a range of mechanisms for attraction of insect visitors/pollinators and deterrence of ineffective pollinators and herbivores. These adaptive traits include the flower size and symmetry, the presence of a spur as a “secondary nectar presenter,” olfactory (secondary metabolites) and sensual (scent, flower color, nectar guide—contrasting palate) signals, and floral rewards, i.e. pollen and nectar. Histochemical tests revealed that the floral glandular trichomes produced essential oils and flavonoids, and pollen grains contained flavonoids, terpenoids, and steroids, which play a role of olfactory attractants/repellents. The nectary gland is disc-shaped and located at the base of the ovary. Nectar is secreted through numerous modified stomata. Nectar secretion began in the bud stage and lasted to the end of anthesis. The amount of produced nectar depended on the flower age and ranged from 0.21 to 3.95 mg/flower (mean?=?1.51 mg). The concentration of sugars in the nectar reached up to 57.0%. Both the nectar amount and sugar concentration demonstrated a significant year and population effect. Pollen production was variable between the years of the study. On average, a single flower of L. vulgaris produced 0.31 mg of pollen. The spectrum of insect visitors in the flowers of L. vulgaris differed significantly between populations. In the urban site, Bombus terrestris and Apis mellifera were the most common visitors, while a considerable number of visits of wasps and syrphid flies were noted in the rural site.  相似文献   

20.
Pollinator‐mediated selection toward larger and abundant flowers is common in naturally pollen‐limited populations. However, floral antagonists may counteract this effect, maintaining smaller‐ and few‐flowered individuals within populations. We quantified pollinator and antagonist visit rates and determined a multiplicative female fitness component from attacked and non‐attacked flowers of the Brazilian hummingbird‐pollinated shrub Collaea cipoensis to determine the selective effects of pollinators and floral antagonists on flower size and number. We predicted that floral antagonists reduce the female fitness component and thus exert negative selective pressures on flower size and number, counteracting the positive effects of pollinators. Pollinators, mainly hummingbirds, comprised 4% of total floral visitation, whereas antagonist ants and bees accounted for 90% of visitation. Nectar‐robbers involved about 99% of floral antagonist visit rates, whereas florivores comprised the remaining 1%. Larger and abundant flowers increased both pollinator and antagonist visit rates and the female fitness component significantly decreased in flowers attacked by nectar‐robbers and florivores in comparison to non‐attacked flowers. We detected that pollinators favored larger‐ and many‐flowered individuals, whereas floral antagonists exerted negative selection on flower size and number. This study confirms that floral antagonists reduce female plant fitness and this pattern directly exerts negative selective pressures on flower size and number, counteracting pollinator‐mediated selection on floral attractiveness traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号