首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 970 毫秒
1.
2.
The floral anatomy of Cephalostemon, Monotrema, Rapatea, Spathanthus, and Stegolepis was studied for taxonomic purposes. All species studied share colleters between the floral parts; sepals, petals, anthers, and style covered by an ornamented cuticle; short epidermal cells with sinuous walls on the abaxial surface of the petals; tetrasporangiate anthers with phenolic idioblasts in the epidermis; endothecium with spiral thickenings; incompletely septate ovary; and anatropous, bitegmic ovules. The floral anatomy is useful not only for characterizing the family, but also for delimiting the subfamilies and genera. Sepals with silica bodies in the epidermal cells; mature anther wall composed of epidermis, endothecium, and middle layer; absence of phenolic idioblasts in the sepals, filaments, and ovary; and stylar epidermal cells with thickened external periclinal wall support Rapateoideae. Cephalostemon and Rapatea show a great number of similarities, corroborating their close relationship indicated in the phylogenetic analyses of the family. Monotrema shares few characters with the genera of Rapateoideae, corroborating its placement in Monotremoideae. Stegolepis shows several distinctive characters, probably related to the greater diversity found in this genus.  相似文献   

3.

Floral secretory structures have been reported for Gentianaceae; however, morphoanatomical studies of these glands are rare. We described the development and secretory activity of the colleters and nectaries throughout the floral development of Chelonanthus viridiflorus. We collected flower buds, flowers at anthesis, and fruits to be investigated using light and scanning electron microscopy. We performed histochemical tests on the secretion of colleters and used glycophyte to confirm the presence of glucose in nectar. Colleters are located on the ventral surface of sepals and nectaries occur in four regions: (i) the dorsal and (ii) ventral surfaces of sepals; (iii) apex of petals; and (iv) base of ovary. The colleters have a short peduncle and a secretory portion with homogeneous cells. They are active in flower buds and secrete polysaccharides and proteins. In flowers at anthesis, they begin to senescence presenting protoplast retraction, cell collapse, and lignification; these characteristics are intensified in fruit. The nectaries of sepals and petals have two to five cells surrounding a central cell through which the secretion is released. Nectaries are numerous, forming a nectariferous area on the dorsal surface of sepals, like that observed on petals, and can form isolated units on the ventral surface of sepals. They are active from flower buds to fruits. A region with secretory activity was identified at the base of the ovary. The secretion of colleters acts in the protection of developing organs, while nectaries are related to defenses against herbivores and the supply of nectar to potential robbers or pollinators.

  相似文献   

4.
The fig (Ficus L.) infructescence, called syconium, is a receptacle with an apical opening, the ostiole, closed by bracts. The ostiolar bracts produce an exudate, which is rather conspicuous in some species. It has not been histochemically analyzed yet, and the structures responsible for its production are still unknown. Some wild growing species of Ficus from Brazil produce high amounts of this ostiolar exudate. Ficus enormis (Mart. ex Miq.) Miq. grows as trees or shrubs in the Atlantic rainforest. Our goal was to identify the secretory structures present in the inflorescence and, to characterize histochemically the ostiolar tissues and exudates. Syconia samples of F. enormis were processed and stained according to the usual techniques in plant anatomy. The morphological analysis revealed different types of bracts, one type specialized in secretion, another showing transitional characteristics between secretory and non-secreting bracts, and a third one being non-secreting. They are designated as secretory ostiolar bracts, transitional bracts and wall bracts. The floral bracteoles, digital-shaped colleters present in the ostiole, at the syconium axis and at the flower receptacle, were also analyzed. All have similar structure, like finger-shaped secretory trichomes. The colleters present among ostiolar bracts may contribute to production and composition of the ostiole exudate.  相似文献   

5.
In order to clarify whether the structures observed at the base of the petiole of the genus Ilex are colleters resulting from stipules, the anatomy, vascularization and secretions of these supposed glandular structures were analysed in nine species. This is the first report of colleters in Ilex. Stipular colleters replace the stipules in all species studied and are characterized by the presence of vascular traces. In addition to the stipular colleters, three other types of colleter were distinguished: standard and lachrymiform colleters found on the leaf teeth or crenations, and sessile colleters found on the margins of the floral bracts. Their basic structure consists of a central core of parenchymatous cells surrounded by one layer of palisade secretory epidermal cells. Histochemical tests were also performed on secretions; proteins were found in the secretions studied, but glucose was not. The glandular origin of the stipular colleters is confirmed on the basis of their position, secretions and anatomy. Analyses of the colleter‐secreted proteins distinguished two different groups of Ilex species. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 197–210.  相似文献   

6.
BACKGROUND AND AIMS: Colleters are secretory structures consisting of a parenchymatic middle axis surrounded by a layer of palisade-like epidermal cells. Colleters occur in a large number of rubiaceous species. Their function is to protect the developing shoot apex. They are also taxonomically useful in the Rubiaceae. This study characterized the structure of the colleters of Simira glaziovii, S. pikia and S. rubra and the biochemistry of secretions in S. glaziovii. METHODS: Stipules of the shoot apices of the three species studied were collected at Barragem de Saracuruna, in Rio de Janeiro state, Brazil. The samples were fixed according to the usual methods for light and electron microscopy. Secretion stipules of S. glaziovii were washed with 0.1 m Tris-HCl plus 0.1 %Triton X-100 to extract proteins and carbohydrates. KEY RESULTS: Colleters in these species are located at the base of the stipule. Each species shows a different pattern of distribution. They form as emergentia from the stipules. Simira glaziovii was different from the other two species because it exhibited vascular traces. The epidermal cells of colleters have dense cytoplasm, nuclei, small vacuoles, endoplasmic reticulum, Golgi apparatus, mitochondria and extraplasmic spaces if they are secretory. The outer cell wall of the mature colleters differs from the outer cell wall of stipule cells and immature colleters. Both carbohydrates and proteins were found in secretions from the stipules of S. glaziovii. CONCLUSIONS: Few ultrastructural differences were noted among the three species. These secretory structures not only protect the shoot apex, but also have taxonomic importance below the genus level.  相似文献   

7.
Inflorescence and floral ontogeny are described in the mimosoid Acacia baileyana F. Muell., using scanning electron microscopy and light microscopy. The panicle includes first-order and second-order inflorescences. The first-order inflorescence meristem produces first-order bracts in acropetal order; these bracts each subtend a second-order inflorescence meristem, commonly called a head. Each second-order inflorescence meristem initiates an acropetally sequential series of second-order bracts. After all bracts are formed, their subtended floral meristems are initiated synchronously. The sepals and petals of the radially symmetrical flowers are arranged in alternating pentamerous whorls. There are 30–40 stamens and a unicarpellate gynoecium. In most flowers, the sepals are initiated helically, with the first-formed sepal varying in position. Petal primordia are initiated simultaneously, alternate to the sepals. Three to five individual stamen primordia are initiated in each of five altemipetalous sectorial clusters. Additional stamen primordia are initiated between adjacent clusters, followed by other stamens initiated basipetally as well as centripetally. The apical configuration shifts from a tunica-corpus cellular arrangement before organogenesis to a mantle-core arrangement at sepal initiation. All floral organs are initiated by periclinal divisions of the subsurface mantle cells. The receptacle expands radially by numerous anticlinal divisions in the mantle at the summit, concurrently with proliferation of stamen primordia. The carpel primordium develops in terminal position by conversion of the floral apex.  相似文献   

8.
The floral development and anatomy ofChrysosplenium alternifolium were studied with the scanning electron microscope and light microscope to understand the initiation sequence of the floral organs and the morphology of the flower, and to find suitable floral characters to interpret the systematic position of the genus within the Saxifragaceae. The tetramerous flower shows a highly variable initiation sequence. The median sepals and first stamens arise in a paired sequence resembling a dimerous arrangement, but the first sepal and stamen arise on the side opposite to the bract. Transversal sepals and stamens emerge sequentially, as one side often precedes the other; sepals and stamens occasionally arise on common primordia. Initiation of the gynoecium is more constant with two median carpel primordia arising on a sunken floral apex. Several flowers were found to be pentamerous with a 2/5 initiation sequence. Flowers were invariably found to be apetalous without traces of petals in primordial stages; this condition is interpreted as an apomorphy. It is postulated that the development of a broad gynoecial nectary is responsible for the occurrence of an obdiplostemonous androecium. The gynoecium shows a number of anatomical particularities not observed in other Saxifragaceae. The presence and distribution of colleters is discussed.  相似文献   

9.
The formation of capitulum inflorescence with two different types of floret is an interesting issue in floral biology and evolution. Here we studied the inflorescence, floral ontogeny and development of the everlasting herb, Xeranthemum squarrosum, using epi‐illumination microscopy. The small vegetative apex enlarged and produced involucral bracts with helical phyllotaxy, which subtended floret primordia in the innermost whorl. Initiation of floret primordia was followed by an acropetal sequence, except for pistillate peripheral florets. The origin of receptacular bracts was unusual, as they derived from the floral primordia rather than the receptacular surface. The order of whorl initiation in both disc and pistillate flowers included corolla, androecium and finally calyx, together with the gynoecium. The inception of sepals and stamens occurred in unidirectional order starting from the abaxial side, whereas petals incepted unidirectionally from the adaxial or abaxial side. Substantial differences were observed in flower structure and the development between pistillate and perfect florets. Pistillate florets presented a zygomorphic floral primordium, tetramerous corolla and androecium and two sepal lobes. In these florets, two sepal lobes and four stamen primordia stopped growing, and the ovary developed neither an ovule nor a typical stigma. The results suggest that peripheral pistillate florets in X. squarrosum, which has a bilabiate corolla, could be considered as an intermediate state between ancestral bilabiate florets and the derived ray florets.  相似文献   

10.

Background and Aims

Species in the holoparasitic plant family Rafflesiaceae exhibit one of the most highly modified vegetative bodies in flowering plants. Apart from the flower shoot and associated bracts, the parasite is a mycelium-like endophyte living inside their grapevine hosts. This study provides a comprehensive treatment of the endophytic vegetative body for all three genera of Rafflesiaceae (Rafflesia, Rhizanthes and Sapria), and reports on the cytology and development of the endophyte, including its structural connection to the host, shedding light on the poorly understood nature of this symbiosis.

Methods

Serial sectioning and staining with non-specific dyes, periodic–Schiff''s reagent and aniline blue were employed in order to characterize the structure of the endophyte across a phylogenetically diverse sampling.

Key Results

A previously identified difference in the nuclear size between Rafflesiaceae endophytes and their hosts was used to investigate the morphology and development of the endophytic body. The endophytes generally comprise uniseriate filaments oriented radially within the host root. The emergence of the parasite from the host during floral development is arrested in some cases by an apparent host response, but otherwise vegetative growth does not appear to elicit suppression by the host.

Conclusions

Rafflesiaceae produce greatly reduced and modified vegetative bodies even when compared with the other holoparasitic angiosperms once grouped with Rafflesiaceae, which possess some vegetative differentiation. Based on previous studies of seeds together with these findings, it is concluded that the endophyte probably develops directly from a proembryo, and not from an embryo proper. Similarly, the flowering shoot arises directly from the undifferentiated endophyte. These filaments produce a protocorm in which a shoot apex originates endogenously by formation of a secondary morphological surface. This degree of modification to the vegetative body is exceptional within angiosperms and warrants additional investigation. Furthermore, the study highlights a mechanical isolation mechanism by which the host may defend itself from the parasite.  相似文献   

11.
The reproductive biology of Hydrobryopsis sessilis (Podostemaceae, subfamily Podostemoideae), a reduced, threatened, aquatic angiosperm endemic to the Western Ghats of India, was examined. This is the first report on the transition from the vegetative to the reproductive phase in this plant, describing floral ontogeny, pollination and the breeding system. The cytohistological zonation of the apical meristem of the reproductive thallus is identical to that of the apical meristem of the vegetative thallus. The floral shoots do not replace vegetative shoots (i.e. the vegetative shoots never bear flowers), but form at new sites at the tip of the flattened plant body. Each floral shoot meristem is tiny, deep‐seated and concave and arises endogenously following lysigeny. The floral shoot meristem gives rise to four to six bracts in a distichous manner. The development of spathe, stamens and carpels is described. The ab initio dorsiventrality of the carpels and the occurrence of endothelium in the ovules are reported. The mature stigmas and anthers lie close to each other. The pollen germinates within undehisced anthers and the pollen tubes enter the stigmas in the unopened floral bud, leading to pre‐anthesis, complete, constitutional cleistogamy under water. The seed set is 63.2%. A significant finding is the penetration of several pollen tubes into the filaments of stamens in 16% of the flower buds, indicating a trend towards cryptic self‐fertilization. The Indian Podostemoideae appear to show a shift from xenogamy or geitonogamy or autogamy in a chasmogamous flower to complete autogamy in a cleistogamous flower. The floral modifications leading to cleistogamy in H. sessilis have been identified. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 222–236.  相似文献   

12.
Each glandular hair of Nyrnphoides peltaturn (Gmel.) O. Kuntz consisted of only one row of cylindar cells with secretory function. The hairs originated from the protoderm cells on the adaxial surface of the second leaf primordium from the shoot apex. Cells of the glandular hairs prossessed dense cytoplast during the secretory period, but the vacuoles were very small. There were not only abundant mitochondria, Golgi bodies and endoplasmic reticulum in the glandular hair cells, but also many plasmodesmata. The authors' research indicated that the mucilage was carried to the edge of the cells by the membranous multilamellar bodies and the vesicles from both Golgi bodies and endoplasmic reticulum. The mucilage was secreted extracellularly by either exocytosis or ecrine secretion. The side walls of the glandular hairs swelled because of mucilage mass accumulation in the walls. The mucilage, being tested to be composed of polysaccharides and a trace of protein, played an important role in protecting the development of the vegetative buds of N. peltatum.  相似文献   

13.
Floral and extrafloral nectaries in plants favor pollination and defense against herbivory. Despite their wide distribution in plants and differences in position, structure, and topography, their biological and systematic significance has been underutilized. This study investigated the macro- and micromorphology of floral and extrafloral nectaries in the epiphytic cactus Rhipsalis teres and reports unusual bristle-like structures (bracteoles) functioning as extrafloral nectaries in the cactus family. The floral nectary is disc-shaped embedded in the hypanthial floral cup with anomocytic stomata as secreting structures present on the epidermal nectarial tissue. Small multicellular bristle-like extrafloral nectar-secreting structures, homologues to bracts, were observed on the plants’ stems and function as bracteolar nectaries having a relatively long and continuous secretory activity throughout several stages of the reproductive structures. Both the floral and bracteolar nectaries are functional. It is possible that in the latter nectar discharge occurs though epidermal cells, which build up pressure inside as nectar accumulates, thereby ending with rupture of the cuticle to release the liquid. The nectar in both secreting structures is scentless and colorless, and the concentration from floral nectaries is slightly lower than that of the bracteolar nectaries, 70.6% and 76.4%, respectively. The relatively higher concentration in the latter might be correlated with exposure, relative humidity and water evaporation, leading to crystallization of sugars on the stem surface in a short period of time.  相似文献   

14.
The inflorescence development of three species of Piper (P. aduncum, P. amalago, and P. marginatum), representing Sections Artanthe and Ottonia, was studied. The spicate inflorescences contain hundreds or even thousands of flowers, depending on the species. Each flower has a tricarpellate syncarpous gynoecium and 4 to 6 free stamens, in the species studied. No sepals or petals are present. In P. marginatum the apical meristem of the inflorescence is zonate in configuration and is unusually elongate: up to 1,170 μm high and up to 480 μm wide during the most active period of organogenesis. Toward the time of apical cessation both height and diameter gradually diminish, leaving an apical residuum which may become an attenuate spine or may be cut off by an abscission zone just below the meristem. The active apex produces bract primordia; when each is 40–55 μm high, a floral apex is initiated in its axil. Both bract and floral apex are initiated by periclinal divisions in cells of the subsurface layer. The bracts undergo differentiation rather early, while the floral apices are still developing. The last-produced bracts near the tip of the inflorescence tend to be sterile.  相似文献   

15.
Colleters are secretory structures well distributed in many organs of Angiosperms. Ultrastructurally, the colleters secretory cell presents an enhanced endoplasmic reticulum, Golgi apparatus, and mitochondria. Secretion synthesis, transportation, and passage through outer cell wall is poorly characterized. This study characterized the anatomy and ultrastructure of BATHYSA NICHOLSONII (Rubiaceae) colleters and evaluated the presence of protein in the secretion and its antifungal property. Samples were collected and prepared according to usual techniques in light and electron microscopy, electrophoresis, and fungal growth inhibition assay. Colleters are of a standard type, cylindrical and elongated, formed by one secretory epidermal palisade layer, and a central axis formed by parenchymatic cells and a vascular trace. Epidermal cells have dense cytoplasm with abundant ribosome, a nucleus, enhanced endoplasmic reticulum and Golgi apparatus. The outer cell wall presented morphologically distinct layers. The presence of secretory cavities was noted in all outer cell wall extents. Secretion preparations analyzed by SDS-PAGE showed that B. NICHOLSONII secretion is a mixture of proteins with molecular masses covering a range of approximately 66 to 24 kDa. This preparation presented an inhibitory effect on the fungi spore growth.  相似文献   

16.
Leaf glands of Diplopterys pubipetala were studied with light and electron microscopy. Aspects of their secretion, visitors and phenology were also recorded. Glands occur along the margin, at the apex and at the base of the leaf blade. All the glands begin secretion when the leaf is still very young, and secretion continues during leaf expansion. The highest proportion of young leaves coincides with the beginning of flowering. The glucose‐rich secretion is collected by Camponotus ants, which patrol the newly formed vegetative and reproductive branches. All the glands are sessile, partially set into the mesophyll, and present uniseriate epidermis subtended by nonvascularised parenchyma. The glands at the apex and base are larger and also consist of vascularised subjacent parenchyma. The cytoplasm of epidermal and parenchyma cells has abundant mitochondria, polymorphic plastids filled with oil droplets and a few starch grains. Golgi bodies and endoplasmic reticulum are more abundant in the epidermal cells. The parenchyma cells of the subjacent region contain chloroplasts and large vacuoles. Plasmodesmata connect all the nectary cells. The zinc iodide–osmium tetroxide (ZIO) method revealed differences in the population of organelles between epidermal cells, as well as between epidermal cells and parenchyma cells. Ultrastructural results indicate that leaf glands of Dpubipetala can be classified as mixed secretory glands. However, the secretion released by these glands is basically hydrophilic and composed primarily of sugars, hence these glands function as nectaries.  相似文献   

17.
The floral morphogenesis of Caltha palustris L. and Trollius buddae Schipcz. was observed with a scanning electron microscope (SEM). The primordia of all floral organs initiate spirally and centripetally and develop centripetally. The spiral initiation sequence may be a basic pattern in Ranunculaceae. The primordia of bracts, sepals, and other floral organs are different in shape: the bract primordia are triangle, the sepal primordia crescent, and the petal (in Trollius), stamen, and carpel primordia hemispheric. This may indicate that the bracts, the sepals and other floral organs are different in origin. The petals are retarded in early developmental stages in Trollius buddae Schipcz, and have purses at the base. The retarded petals are very common in Ranunculaceae and the purse of the petal is similar to that of some Aquilegia species. The microspores in a longitudinal series of stamens develop centripetally in Caltha and Trollius; this may be a basic pattern in Ranunculaceae. The carpel primordia are plicate. In the developmental process of the carpels, the stigmatic tissue appears from the apex of the style and is decurrent along the ventral suture in Caltha, but there is no obvious stigmatic tissue in Trollius. Based on floral morphogenesis characteristics as well as the results from molecular systematics, comparative morphology and palynology studies, we consider that Caltha is not closely related to Trollius and that these two genera should not be treated in the same tribe.  相似文献   

18.
利用扫描电镜观察了驴蹄草Caltha palustris L.和川陕金莲花Trollius buddae Schipcz.花器官的发生和发育过程。结果显示:驴蹄草和川陕金莲花的所有花器官均螺旋状向心式发生、向心式发育,花器官的螺旋状发生方式在毛茛科Ranunculaceae可能是一种基本式样;苞片、萼片与其他花器官原基的形状明显不同,显示苞片、萼片与其他花器官在系统发生上有所不同;川陕金莲花的花瓣在早期延迟发育且基部具囊,花瓣的延迟发育在毛茛科具花瓣的属中非常普遍,而花瓣基部的囊类似于耧斗菜属Aquilegia一些植物;两个属雄蕊群一纵列雄蕊中的小孢子均向心式发育,这种发育方式在毛茛科可能为基本类型。两个属植物的心皮原基均为对折式,在发育过程中,驴蹄草心皮顶端沿腹缝线形成下延的柱头组织,川陕金莲花不形成明显的柱头组织。根据花形态发生和发育特点,并结合其他研究成果,认为这两个属不应当属于同一个族。  相似文献   

19.
pea-MADS4 (PEAM4) regulates floral morphology in Pisum sativum L., however, its molecular mechanisms still remain unclear. Virus-induced gene silencing (VIGS) is a recently developed reverse genetic approach that facilities an easier and more rapid study of gene functions. In this study, the PEAM4 gene was effectively silenced by VIGS using a pea early browning virus (PEBV) in wild type pea JI992. The infected plants showed abnormal phenotypes, as the floral organs, especially the sepals and petals changed in both size and shape, which made the corolla less closed. The petals changed in morphology and internal symmetry with, the stamens reduced and carpel dehisced. Larger sepals and longer tendrils with small cauline leaves appeared, with some sepals turning into bracts, and secondary inflorescences with fused floral organs were formed, indicating a flower-to-inflorescence change. The infected plants also displayed a delayed and prolonged flowering time. The PEAM4-VIGS plants with altered floral morphology were similar to the pim (proliferating inflorescence meristem) mutant and also mimicked the phenotypes of ap1 mutants in Arabidopsis. The expression pattern of the homologous genes PsSOC1a and PsSVP, which were involved in flowering time and florescence morphological control downstream of PEAM4, were analyzed by real-time RT-PCR and mRNA in situ hybridization. PsSOC1a and PsSVP were ectopically expressed and enhanced in the floral meristems from PEAM4-silenced plants. Our data suggests that PEAM4 may have a similar molecular mechanism as AtAP1, which inhibits the expression of PsSOC1a and PsSVP in the floral meristem from the early stages of flower development. As such, in this way PEAM4 plays a crucial role in maintaining floral organ identity and flower development in pea.  相似文献   

20.
Temporal and spatial formation and differentiation of axillary buds in developing shoots of mature eastern cottonwood (Populus deltoides) were investigated. Shoots sequentially initiate early vegetative, floral, and late vegetative buds. Associated with these buds is the formation of three distinct leaf types. In May of the first growing season, the first type begins forming in terminal buds and overwinters as relatively developed foliar structures. These leaves bear early vegetative buds in their axils. The second type forms late in the first growing season in terminal buds. These leaves form floral buds in their axils the second growing season. The floral bud meristems initiate scale leaves in April and begin forming floral meristems in the axils of the bracts in May. The floral meristems subsequently form floral organs by the end of the second growing season. The floral buds overwinter with floral organs, and anthesis occurs in the third growing season. The third type of leaf forms and develops entirely outside the terminal buds in the second growing season. These leaves bear the late vegetative buds in their axils. On the basis of these and other supporting data, we hypothesize a 3-yr flowering cycle as opposed to the traditional 2-yr cycle in eastern cottonwood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号