首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Peng J  Yang J  Jin Q 《PloS one》2011,6(4):e18509

Background

The completion of numerous genome sequences introduced an era of whole-genome study. However, many genes are missed during genome annotation, including small RNAs (sRNAs) and small open reading frames (sORFs). In order to improve genome annotation, we aimed to identify novel sRNAs and sORFs in Shigella, the principal etiologic agents of bacillary dysentery.

Methodology/Principal Findings

We identified 64 sRNAs in Shigella, which were experimentally validated in other bacteria based on sequence conservation. We employed computer-based and tiling array-based methods to search for sRNAs, followed by RT-PCR and northern blots, to identify nine sRNAs in Shigella flexneri strain 301 (Sf301) and 256 regions containing possible sRNA genes. We found 29 candidate sORFs using bioinformatic prediction, array hybridization and RT-PCR verification. We experimentally validated 557 (57.9%) DOOR operon predictions in the chromosomes of Sf301 and 46 (76.7%) in virulence plasmid.We found 40 additional co-expressed gene pairs that were not predicted by DOOR.

Conclusions/Significance

We provide an updated and comprehensive annotation of the Shigella genome. Our study increased the expected numbers of sORFs and sRNAs, which will impact on future functional genomics and proteomics studies. Our method can be used for large scale reannotation of sRNAs and sORFs in any microbe with a known genome sequence.  相似文献   

4.
5.
【目的】优化柞蚕Antheraea pernyi基因组注释,更好地扩展其在比较基因组学及品种改良研究中的应用。【方法】对柞蚕进行全长转录组测序分析;经全长转录本与参考基因组比对,鉴定新基因及新转录本,并对这些新基因和新转录本进行功能注释及长链非编码RNAs (lncRNAs)预测。利用大量的蛋白质编码转录本和lncRNAs对柞蚕基因组中基因结构进行修订。最后创建矫正后的柞蚕基因组基因注释。【结果】新发现1 997个蛋白编码基因和3 399个lncRNA基因,分别由2 402个和3 574个全长转录本数据支持。发现柞蚕基因组含25 021个基因,其中19 825个基因是蛋白编码基因,包括7个保幼激素酸甲基转移酶基因。【结论】本研究促进了对柞蚕基因组基因注释信息的认识,为柞蚕及相关物种功能基因组及比较基因组学研究提供了很有用的数据资源。  相似文献   

6.
Identification of bacterial small non-coding RNAs: experimental approaches   总被引:3,自引:0,他引:3  
Almost 140 bacterial small RNAs (sRNAs; sometimes referred to as non-coding RNAs) have been discovered in the past six years. The majority of these sRNAs were discovered in Escherichia coli, and a smaller subset was characterized in other bacteria, many of which were pathogenic. Many of these genes were identified as a result of systematic screens using computational prediction of sRNAs and experimental-based approaches, including microarray and shotgun cloning. A smaller number of sRNAs were discovered by direct labeling or by functional genetic screens. Many of the discovered genes, ranging in size from 50 to 500 nucleotides, are conserved and located in intergenic regions, in-between open reading frames. The expression of many of these genes is growth phase dependent or stress related. As each search employed specific parameters, this led to the identification of genes with distinct characteristics. Consequently, unique sRNAs such as those that are species-specific, sRNA genes that are transcribed under unique conditions or genes located on the antisense strand of protein-encoding genes, were probably missed.  相似文献   

7.
In plants, small RNAs(sRNAs) usually refer to non-coding RNAs(ncRNAs) with lengths of 20–24 nucleotides. sRNAs are involved in the regulation of many essential processes related to plant development and environmental responses. sRNAs in plants are mainly grouped into microRNAs(miRNAs) and small interfering RNAs(siRNAs), and the latter can be further classified into trans-acting siRNAs(ta-siRNAs), repeat-associated siRNAs(ra-siRNAs), natural anti-sense siRNAs(nat-siRNAs), etc. Many sRNAs exhibit a clustered distribution pattern in the genome. Here, we summarize the features and functions of cluster-distributed sRNAs, aimed to not only provide a thorough picture of sRNA clusters(SRCs) in plants, but also shed light on the identification of new classes of functional sRNAs.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Rice has many characteristics of a model plant. The recent completion of the draft of the rice genome represents an important advance in our knowledge of plant biology and also has an important contribution to the understanding of general genomic evolution. Besides the rice genome finishing map, the next urgent step for rice researchers is to annotate the genes and non-coding functional sequences. The recent work shows that noncoding RNAs (ncRNAs) play significant roles in biological systems. We have explored all the known small RNAs (a kind of ncRNA) within rice genome and other six species sequences, including Arabidopsis, maize, yeast, worm, mouse and pig. As a result we find 160 out of 552 small RNAs (sRNAs) in database have ho-mologs in 108 rice scaffolds, and almost all of them (99.41 %) locate in intron regions of rice by gene predication. 19 sRNAs only appear in rice. More importantly, we find two special U14 sRNAs: one is located in a set of sRNA ZMU14SNR9(s) which only appears in three plants,  相似文献   

15.
16.
17.
L Randau 《Genome biology》2012,13(7):R63-11
ABSTRACT: BACKGROUND: The minimal genome of the tiny, hyperthermophilic archaeon Nanoarchaeum equitans contains several fragmented genes and revealed unusual RNA processing pathways. These include the maturation of tRNA molecules via the trans-splicing of tRNA halves and genomic rearrangements to compensate for the absence of RNase P. RESULTS: Here, the RNA processing events in the N. equitans cell are analyzed using RNA-Seq deep sequencing methodology. All tRNA half precursor and tRNA termini were determined and support the tRNA trans-splicing model. The processing of CRISPR RNAs from two CRISPR clusters was verified. Twenty-seven C/D box small RNAs (sRNAs) and a H/ACA box sRNA were identified. The C/D box sRNAs were found to flank split genes, to form dicistronic tRNA-sRNA precursors and to be encoded within the tRNAMet intron. CONCLUSIONS: The presented data provide an overview of the production and usage of small RNAs in a cell that has to survive with a highly reduced genome. N. equitans lost many essential metabolic pathways but maintains highly active CRISPR/Cas and rRNA modification systems that appear to play an important role in genome fragmentation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号