首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Dioxinodehydroeckol (DHE) isolated from Ecklonia cava, has previously been investigated for its inhibition of the differentiation of 3T3-L1 preadipocytes into adipocytes. Levels of lipid accumulation were measured, along with changes in the expression of genes and proteins associated with adipogenesis and lipolysis. Confluent 3T3-L1 preadipocytes in medium with or without different concentrations of DHE for 7 days were differentiated into adipocytes. Lipid accumulation was quantified by measuring direct triglyceride contents and Oil-Red O staining. The expression of genes and proteins associated with adipogenesis and lipolysis was measured using RT-PCR, quantitative real-time RT-PCR and Western blotting analysis. It was found that the presence of DHE significantly reduced lipid accumulation and down-regulated the expression of peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1) and CCAAT/enhancer-binding proteins (C/EBPα) in a dose-dependent manner. Moreover, DHE suppressed regulation of the adipocyte-specific gene promoters such as fatty acid binding protein (FABP4), fatty acid transport protein (FATP1), fatty acid synthase (FAS), lipoprotein lipase (LPL), acyl-CoA synthetase 1 (ACS1), leptin, perilipin and HSL compared to control adipocytes. The specific mechanism mediating the effects of DHE was confirmed by activation of phosphorylated AMP-activated protein kinase (pAMPK). Therefore, these results suggest that DHE exerts anti-adipogenic effect on adipocyte differentiation through the activation and modulation of the AMPK signaling pathway.  相似文献   

4.
Adult mice abundantly express neudesin, an extracellular heme-binding protein with neurotrophic activity, in white adipose tissues. At the early stage of adipocyte differentiation during adipogenesis, however, the expression of neudesin decreased transiently. Neudesin-hemin significantly suppressed adipogenesis in 3T3-L1 cells. The knockdown of neudesin by RNA interference markedly promoted adipogenesis in 3T3-L1 cells and decreased MAPK activation during adipocyte differentiation. The addition or knockdown of neudesin affected the expression of C/EBPα and PPARγ but not of C/EBPβ. These findings suggest that neudesin plays a critical role in the early stage of adipocyte differentiation in which C/EBPβ induces PPARγ and C/EBPα expressions, by controlling the MAPK pathway.  相似文献   

5.
Li F  Yang H  Duan Y  Yin Y 《Cell biology international》2011,35(11):1141-1146
Myostatin is known as an inhibitor of muscle development, but its role in adipogenesis and lipid metabolism is still unclear, especially the underlying mechanisms. Here, we demonstrated that myostatin inhibited 3T3-L1 preadipocyte differentiation into adipocyte by suppressing C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome-proliferator-activated receptor γ), also activated ERK1/2 (extracellular-signal-regulated kinase 1/2). Furthermore, myostatin enhanced the phosphorylation of HSL (hormone-sensitive lipase) and ACC (acetyl-CoA carboxylase) in fully differentiated adipocytes, as well as ERK1/2. Besides, we noted that myostatin markedly raised the levels of leptin and adiponectin release and mRNA expression during preadipocyte differentiation, but the levels were inhibited by myostatin treatments in fully differentiated adipocytes. These results suggested that myostatin suppressed 3T3-L1 preadipocyte differentiation and regulated lipid metabolism of mature adipocyte, in part, via activation of ERK1/2 signalling pathway.  相似文献   

6.
7.

The adipokine Chemerin is reported to regulate adipogenesis and glucose homeostasis in vivo and in 3T3-L1 cells. Our team is focused on the role of Chemerin in metabolism and intramuscular adipocyte differentiation because intramuscular fat is the basic material for the formation of marbling in livestock and poultry meat. In this study, bovine intramuscular mature adipocytes were cultured in medium with Chemerin, and the process of lipolysis of mature adipocytes and the adipogenesis of de-differentiated preadipocytes were investigated. The results showed that Chemerin induced significant lipolytic metabolism in intramuscular mature adipocytes, indicated by increased levels of glycerol, FFA, and up-regulated expression of the lipolysis critical factors HSL, LPL, and leptin. Meanwhile, the expressions of adipogenic key factors PPARγ, C/EBPα, and A-FABP were decreased by Chemerin during lipolysis or dedifferentiation in mature adipocytes. The de-differentiated preadipocytes could re-differentiate into mature adipocytes. Intriguingly, the formation of cells’ lipid droplets was promoted by Chemerin during preadipocyte differentiation. In addition, mRNA and protein expressions of PPARγ, C/EBPα, and A-FABP were up-regulated by Chemerin during preadipocytes differentiation. These results suggest that Chemerin promotes lipolysis in mature adipocytes and induces adipogenesis during preadipocyte re-differentiation, further indicating a dual role for Chemerin in the deposition of intramuscular fat in ruminant animals.

  相似文献   

8.
The adipokine Chemerin has been reported to regulate differentiation and metabolism of adipocytes, but the mechanism underlying lipolysis is still largely unknown. The purpose of this study was to explore whether ERK1/2 pathway is involved in regulating Chemerin during bovine intramuscular mature adipocyte lipolysis. Intramuscular mature adipocytes of dairy bull calves were cultured in vitro and were treated with Chemerin or U0126, which is an inhibitor of ERK1/2 pathway. The results showed that TG content in cells was significantly decreased, glycerol and free fatty acid were significantly increased in cell culture media, and the expression of phosphorylated ERK1/2 in cells was increased in Chemerin-treated group, suggested that ERK1/2 pathway was involved in regulation of lipolysis by Chemerin. In addition, the expression of lipolytic-related critical factors ATGL, HSL, LPL, PPARα, UCP3, and CPT1 were upregulated, but the expression of adipogenic key factors, including PPARγ and C/EBPα were downregulated by Chemerin. Interestingly, all the effects of Chemerin on genes expression in intramuscular mature adipocytes or fat tissue were inhibited by U0126, showed that the function of Chemerin to promote adipose decomposition will be significantly weakened if the ERK1/2 pathway is suppressed, and confirmed that ERK1/2 pathway is involved in mediate Chemerin-enhanced lipolysis. In conclusion, the study demonstrated that Chemerin induce intramuscular mature adipocytes lipolysis through activation of the ERK1/2 pathway. Our research at least provide partial mechanisms of Chemerin on lipolysis and deposition of intramuscular fat tissue of dairy bull calves.  相似文献   

9.
10.
《Phytomedicine》2014,21(12):1733-1741
Oroxylin A (OA) is a flavonoid found in Oroxylum indicum, a medicinal plant with multiple biological activities. This study was taken up to investigate the effect of OA, on adipogenesis, lipolysis and apoptosis in 3T3 L1 cells. Pre-adipocytes were treated with 10–40 μM OA on various days of adipogenesis treatment schedule. Mature adipocytes were treated with OA for lipolysis and apoptosis studies. In maturing pre-adipocytes, 10 μM OA suppressed intracellular lipid accumulation by 42.19% which was confirmed by lipidTox imaging of cells. In addition, OA decreased the nuclear translocation of PPARγ and mRNA expression of its downstream genes (FAS and LPL) along with adiponectin secretion. In mature adipocytes, 40 μM of OA decreased cell viability by 30% of control. Annexin V/PI staining showed induction of apoptosis which was further confirmed by enhanced levels of pro-apoptotic proteins Bax, cyt c, AIF and chromatin condensation. OA enhanced TNF-α secretion, lipolysis and decreased Akt phosphorylation in mature adipocytes. Findings suggest that OA possibly exerts its anti-obesity effect by affecting adipocyte life cycle at critical points of differentiation and maturity. When we compared the potency of OA with non-methoxylated flavonoids morin, naringenin and kaempferol on adipocyte life cycle OA was far more potent. Thus, study clearly indicates a new role for oroxylin A as regulator of adipocyte life cycle. In addition, study also suggested a specific role of methoxylated group in exerting lipolysis and cytotoxic effects in mature adipocytes.  相似文献   

11.
12.
13.
Epoxygenase activity and synthesis of epoxyeicosatrienoic acids (EETs) have emerged as important modulators of obesity and diabetes. We examined the effect of the EET-agonist 12-(3-hexylureido)dodec-8(2) enoic acid on mesenchymal stem cell (MSC) derived adipocytes proliferation and differentiation. MSCs expressed substantial levels of EETs and inhibition of soluble epoxide hydrolase (sEH) increased the level of EETs and decreased adipogenesis. EET agonist treatment increased HO-1 expression by inhibiting a negative regulator of HO-1 expression, Bach-1. EET treatment also increased βcatenin and pACC levels while decreasing PPARγ C/EBPα and fatty acid synthase levels. These changes were manifested by a decrease in the number of large inflammatory adipocytes, TNFα, IFNγ and IL-1α, but an increase in small adipocytes and in adiponectin levels. In summary, EET agonist treatment inhibits adipogenesis and decreases the levels of inflammatory cytokines suggesting the potential action of EETs as intracellular lipid signaling modulators of adipogenesis and adiponectin.  相似文献   

14.
Berberine exerts an anti-adipogenic activity that is associated with the down-regulation of C/EBPα and PPARγ. Stimulation of AMP-activated kinase (AMPK) caused by inhibition of mitochondrial respiration has been suggested to underlie such molecular regulation. In the present study, we show that berberine up-regulated the expression of two different sets of C/EBP inhibitors, CHOP and DEC2, while down-modulating C/EBPα, PPARγ and other adipogenic markers and effectors in differentiating 3T3-L1 preadipocytes and mature adipocytes. Data also suggested that the berberine-induced up-regulation of CHOP and DEC2 was attributable to selective activation of an unfolded protein response (UPR) and modified extracellular environment, respectively. As a result, the anti-adipogenic activity of berberine was diminished remarkably by adjusting the differentiation culture media and limitedly but consistently by knockdown of CHOP expression. Together, up-regulation of C/EBP inhibitors appears to underlie the berberine-induced repression of C/EBPα and PPARγ and, so, the inhibition of adipogenesis.  相似文献   

15.
用成熟脂肪建立一种新的猪前体脂肪细胞培养模型   总被引:1,自引:0,他引:1  
用去分化的成熟脂肪细胞建立一种新的具有再增殖和再分化能力的猪前体脂肪细胞模型. 用“天花板” 培养法分离、培养1~3日龄仔猪皮下成熟脂肪细胞, 显微镜下观察细胞形态变化并计数, 流式细胞术检测细胞周期;油红O染色法检测脂肪细胞分化率, RT-PCR分析前体脂肪细胞标志基因Pref-1及成熟脂肪细胞关键转录因子PPARγ和C/EBPα等mRNA表达情况. 发现刚贴壁的细胞为单室脂滴成熟脂肪细胞, 油红O染色完全阳性; 14d后这种成熟脂肪细胞完全去分化为无脂滴的纤维状细胞, 并表达前体脂肪细胞标志基因Pref-1, 油红O染色阴性. 这种去分化的前体脂肪细胞在成脂诱导剂作用下,可重新分化为成熟的脂肪细胞. 结果证实,成熟脂肪细胞去分化后的前体脂肪细胞可重新增殖、分化为成熟脂肪细胞, 是一种新的有效的前体脂肪细胞模型.  相似文献   

16.
17.
We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of human ASC and at later stages in human immature adipocytes.  相似文献   

18.
19.
β-Catenin reportedly inhibits adipogenesis through the down-regulations of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer binding protein (C/EBP)α. We report that baicalin, a natural flavonoid compound, inhibits adipogenesis by modulating β-Catenin. During 3T3-L1 cell adipogenesis, β-Catenin was down-regulated, but baicalin treatment maintained β-Catenin expression. Anti-adipogenic effects of baicalin were significantly attenuated by β-Catenin siRNA transfection. β-Catenin siRNA rescued the reduced expressions of PPARγ, C/EBPα, fatty acid binding protein 4 and lipoprotein lipase by baicalin. Furthermore, baicalin modulated members of the WNT/β-Catenin pathway by maintaining the expressions of low-density lipoprotein receptor-related protein 6, disheveled (DVL)2 and DVL3. These findings suggest that β-Catenin mediates the anti-adipogenic effects of baicalin.  相似文献   

20.
Bone marrow mesenchymal stromal cells (BMSCs) are the common precursors for both osteoblasts and adipocytes. With aging, BMSC osteoblast differentiation decreases whereas BMSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. In the present study, we investigated the effect of asiatic acid (AA) on adipocytic differentiation of BMSCs. AA inhibited the adipogenic induction of lipid accumulation, activity of glycerol-3-phosphate dehydrogenase, and expression of marker genes in adipogenesis: peroxisome proliferation-activated receptor (PPAR)γ, adipocyte fatty acid-binding protein (ap) 2, and adipsin. Further, we found that AA did not alter clonal expansion rate and expression of C/EBPβ, upstream key regulator of PPARγ, and binding activity of C/EBPβ to PPARγ promoter was not affected by AA as well. These findings suggest that AA may modulate differentiation of BMSCs to cause a lineage shift away from the adipocytes, and inhibition of PPARγ by AA is through C/EBPβ-independent mechanisms. Thus, AA could be a potential candidate for a novel drug against osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号