首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Side effects of cytostatic treatment include development of anemia resulting from either decreased generation or accelerated clearance of circulating erythrocytes. Recent experiments revealed a novel kind of stress-induced erythrocyte death, i.e. eryptosis, which is characterized by enhanced cytosolic Ca(2+) levels, increased ceramide formation and exposure of phosphatidylserine at the cell surface. The present study explored whether cytostatic treatment with paclitaxel (Taxol) triggers eryptosis. Blood was drawn from cancer patients before and after infusion of 175 mg/m2 Taxol. The treatment significantly decreased the hematocrit and significantly increased the percentage of annexin-V-binding erythrocytes in vivo (by 37%). In vitro incubation of human erythrocytes with 10 microM paclitaxel again significantly increased annexin-V-binding (by 129%) and augmented the increase of annexin-V-binding following cellular stress. The enhanced phosphatidylserine exposure was not dependent on caspase-activity but paralleled by erythrocyte shrinkage, increase of cytosolic Ca(2+) activity, ceramide formation and activation of calpain. Phosphatidylserine exposure was similarly induced by docetaxel but not by carboplatin or doxorubicin. Moreover, eryptosis was triggered by the Ca(2+) ionophore ionomycin (10 microM). In mice, ionomycin-treated eryptotic erythrocytes were rapidly cleared from circulating blood and sequestrated into the spleen. In conclusion, our data strongly suggest that paclitaxel-induced anemia is at least partially due to induction of eryptosis.  相似文献   

2.
Previously we showed that the redox active Cu(2+) was much more effective than Cd(2+) at inducing reactive oxygen species ("ROS") formation in hepatocytes and furthermore "ROS" scavengers prevented Cu(2+)-induced hepatocyte cytotoxicity (Pourahmad and O'Brien, 2000). In the following it is shown that hepatocyte cytotoxicity induced by Cu(2+), but not Cd(2+), was preceded by lysosomal membrane damage as demonstrated by acridine orange release. Cytotoxicity, "ROS" formation, and lipid peroxidation were also readily prevented by methylamine or chloroquine (lysosomotropic agents) or 3-methyladenine (an inhibitor of autophagy). Hepatocyte lysosomal proteolysis was also activated by Cu(2+), but not Cd(2+), as tyrosine was released from the hepatocytes and was prevented by leupeptin and pepstatin (lysosomal protease inhibitors). Cu(2+)-induced cytotoxicity was also prevented by leupeptin and pepstatin. A marked increase in Cu(2+)-induced hepatocyte toxicity also occurred if the lysosomal toxins gentamicin or aurothioglucose were added at the same time as the Cu(2+). Furthermore, destabilizing lysosomal membranes beforehand by preincubating the hepatocytes with gentamicin or aurothioglucose prevented Cu(2+)-induced hepatocyte cytotoxicity. It is proposed that Cu(2+)-induced cytotoxicity involves lysosomal damage that causes the release of cytotoxic digestive enzymes as a result of lysosomal membrane damage by "ROS" generated by lysosomal Cu(2+) redox cycling.  相似文献   

3.
Erythrocytes lack nuclei and mitochondria, the organelles important for apoptosis of nucleated cells. However, following increase of cytosolic Ca(2+) activity, erythrocytes undergo cell shrinkage, cell membrane blebbing and breakdown of phosphatidylserine asymmetry, all features typical for apoptosis in nucleated cells. The same events are observed following osmotic shock, an effect mediated in part by activation of Ca(2+)-permeable cation channels. However, erythrocyte death following osmotic shock is blunted but not prevented in the absence of extracellular Ca(2+) pointing to additional mechanisms. As shown in this study, osmotic shock (950 mOsm) triggers sphingomyelin breakdown and formation of ceramide. The stimulation of annexin binding following osmotic shock is mimicked by addition of ceramide or purified sphingomyelinase and significantly blunted by genetic (aSM-deficient mice) or pharmacologic (50 microM 3,4-dichloroisocoumarin) knockout of sphingomyelinase. The effect of ceramide is blunted but not abolished in the absence of Ca(2+). Conversely, osmotic shock-induced annexin binding is potentiated in the presence of sublethal concentrations of ceramide. In conclusion, ceramide and Ca(2+) entry through cation channels concert to trigger erythrocyte death during osmotic shock.  相似文献   

4.
Microbial lung infections are the major cause of morbidity and mortality in the hereditary metabolic disorder cystic fibrosis, yet the molecular mechanisms leading from the mutation of cystic fibrosis transmembrane conductance regulator (CFTR) to lung infection are still unclear. Here, we show that ceramide age-dependently accumulates in the respiratory tract of uninfected Cftr-deficient mice owing to an alkalinization of intracellular vesicles in Cftr-deficient cells. This change in pH results in an imbalance between acid sphingomyelinase (Asm) cleavage of sphingomyelin to ceramide and acid ceramidase consumption of ceramide, resulting in the higher levels of ceramide. The accumulation of ceramide causes Cftr-deficient mice to suffer from constitutive age-dependent pulmonary inflammation, death of respiratory epithelial cells, deposits of DNA in bronchi and high susceptibility to severe Pseudomonas aeruginosa infections. Partial genetic deficiency of Asm in Cftr(-/-)Smpd1(+/-) mice or pharmacological treatment of Cftr-deficient mice with the Asm blocker amitriptyline normalizes pulmonary ceramide and prevents all pathological findings, including susceptibility to infection. These data suggest inhibition of Asm as a new treatment strategy for cystic fibrosis.  相似文献   

5.
Similar to nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is characterized by cell shrinkage, cell membrane blebbing and cell membrane phospholipid scrambling. Eryptotic cells are removed and thus prevented from undergoing hemolysis. Eryptosis is stimulated by Ca(2+) following Ca(2+) entry through unspecific cation channels. Ca(2+) sensitivity is enhanced by ceramide, a product of acid sphingomyelinase. Eryptosis is triggered by hyperosmolarity, oxidative stress, energy depletion, hyperthermia and a wide variety of xenobiotics and endogenous substances. Eryptosis is inhibited by nitric oxide, catecholamines and a variety of further small molecules. Erythropoietin counteracts eryptosis in part by inhibiting the Ca(2+)-permeable cation channels but by the same token may foster formation of erythrocytes, which are particularly sensitive to eryptotic stimuli. Eryptosis is triggered in several clinical conditions such as iron deficiency, diabetes, renal insufficiency, myelodysplastic syndrome, phosphate depletion, sepsis, haemolytic uremic syndrome, mycoplasma infection, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase-(G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria, and Wilson's disease. Enhanced eryptosis is observed in mice with deficient annexin 7, cGMP-dependent protein kinase type I (cGKI), AMP-activated protein kinase AMPK, anion exchanger AE1, adenomatous polyposis coli APC and Klotho as well as in mouse models of sickle cell anemia and thalassemia. Eryptosis is decreased in mice with deficient phosphoinositide dependent kinase PDK1, platelet activating factor receptor, transient receptor potential channel TRPC6, janus kinase JAK3 or taurine transporter TAUT. If accelerated eryptosis is not compensated by enhanced erythropoiesis, clinically relevant anemia develops. Eryptotic erythrocytes may further bind to endothelial cells and thus impede microcirculation.  相似文献   

6.
Föller M  Huber SM  Lang F 《IUBMB life》2008,60(10):661-668
Eryptosis, the suicidal death of erythrocytes, is characterised by cell shrinkage, membrane blebbing and cell membrane phospholipid scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing erythrocytes are recognised by macrophages, which engulf and degrade the affected cells. Reported triggers of eryptosis include osmotic shock, oxidative stress, energy depletion, ceramide, prostaglandin E(2), platelet activating factor, hemolysin, listeriolysin, paclitaxel, chlorpromazine, cyclosporine, methylglyoxal, amyloid peptides, anandamide, Bay-5884, curcumin, valinomycin, aluminium, mercury, lead and copper. Diseases associated with accelerated eryptosis include sepsis, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase (G6PD)-deficiency, phosphate depletion, iron deficiency, hemolytic uremic syndrome and Wilsons disease. Eryptosis may be inhibited by erythropoietin, adenosine, catecholamines, nitric oxide (NO) and activation of G-kinase. Most triggers of eryptosis except oxidative stress are effective without activation of caspases. Their signalling involves formation of prostaglandin E(2) with subsequent activation of cation channels and Ca2+ entry and/or release of platelet activating factor (PAF) with subsequent activation of sphingomyelinase and formation of ceramide. Ca2+ and ceramide stimulate scrambling of the cell membrane. Ca2+ further activates Ca2+-sensitive K+ channels leading to cellular KCl loss and cell shrinkage and stimulates the protease calpain resulting in degradation of the cytoskeleton. Eryptosis allows defective erythrocytes to escape hemolysis. On the other hand, excessive eryptosis favours the development of anemia. Thus, a delicate balance between proeryptotic and antieryptotic mechanisms is required to maintain an adequate number of circulating erythrocytes and yet avoid noneryptotic death of injured erythrocytes.  相似文献   

7.
Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its effect on astrocytes. We found that amyloid peptides activated caspase 3 and induced apoptosis in primary cultured astrocytes, which was prevented by caspase 3 inhibition. Apoptosis was also prevented by shRNA-mediated down-regulation of PAR-4, a protein sensitizing cells to the sphingolipid ceramide. Consistent with a potentially proapoptotic effect of PAR-4 and ceramide, astrocytes surrounding amyloid plaques in brain sections of the 5xFAD mouse (and Alzheimer disease patient brain) showed caspase 3 activation and were apoptotic when co-expressing PAR-4 and ceramide. Apoptosis was not observed in astrocytes with deficient neutral sphingomyelinase 2 (nSMase2), indicating that ceramide generated by nSMase2 is critical for amyloid-induced apoptosis. Antibodies against PAR-4 and ceramide prevented amyloid-induced apoptosis in vitro and in vivo, suggesting that apoptosis was mediated by exogenous PAR-4 and ceramide, potentially associated with secreted lipid vesicles. This was confirmed by the analysis of lipid vesicles from conditioned medium showing that amyloid peptide induced the secretion of PAR-4 and C18 ceramide-enriched exosomes. Exosomes were not secreted by nSMase2-deficient astrocytes, indicating that ceramide generated by nSMase2 is critical for exosome secretion. Consistent with the ceramide composition in amyloid-induced exosomes, exogenously added C18 ceramide restored PAR-4-containing exosome secretion in nSMase2-deficient astrocytes. Moreover, isolated PAR-4/ceramide-enriched exosomes were taken up by astrocytes and induced apoptosis in the absence of amyloid peptide. Taken together, we report a novel mechanism of apoptosis induction by PAR-4/ceramide-enriched exosomes, which may critically contribute to Alzheimer disease.  相似文献   

8.
An intrinsic pathway of apoptosis is regulated by the B-cell lymphoma-2 (Bcl-2) family proteins. We previously reported that a fine rheostatic balance between the anti- and pro-apoptotic multidomain Bcl-2 family proteins controls hepatocyte apoptosis in the healthy liver. The Bcl-2 homology domain 3 (BH3)-only proteins set this rheostatic balance toward apoptosis upon activation in the diseased liver. However, their involvement in healthy Bcl-2 rheostasis remains unknown. In the present study, we focused on two BH3-only proteins, Bim and Bid, and we clarified the Bcl-2 network that governs hepatocyte life and death in the healthy liver. We generated hepatocyte-specific Bcl-xL- or Mcl-1-knock-out mice, with or without disrupting Bim and/or Bid, and we examined hepatocyte apoptosis under physiological conditions. We also examined the effect of both Bid and Bim disruption on the hepatocyte apoptosis caused by the inhibition of Bcl-xL and Mcl-1. Spontaneous hepatocyte apoptosis in Bcl-xL- or Mcl-1-knock-out mice was significantly ameliorated by Bim deletion. The disruption of both Bim and Bid completely prevented hepatocyte apoptosis in Bcl-xL-knock-out mice and weakened massive hepatocyte apoptosis via the additional in vivo knockdown of mcl-1 in these mice. Finally, the hepatocyte apoptosis caused by ABT-737, which is a Bcl-xL/Bcl-2/Bcl-w inhibitor, was completely prevented in Bim/Bid double knock-out mice. The BH3-only proteins Bim and Bid are functionally active but are restrained by the anti-apoptotic Bcl-2 family proteins under physiological conditions. Hepatocyte integrity is maintained by the dynamic and well orchestrated Bcl-2 network in the healthy liver.  相似文献   

9.
The natural nutrient component Curcumin with anti-inflammatory and antitumor activity has previously been shown to stimulate apoptosis of several nucleated cell types. The present study has been performed to explore whether Curcumin could similarly induce suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing cells are phagocytosed and thus rapidly cleared from circulating blood. Erythrocyte membrane scrambling may be triggered by increase of cytosolic Ca(2+) activity or formation of ceramide. To test for eryptosis, erythrocyte phosphatidylserine exposure has been estimated from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to Curcumin (= 1 microM) increased annexin V binding and decreased forward scatter, pointing to phosphatidylserine exposure at the cell surface and cell shrinkage. According to Fluo3 fluorescence Curcumin increased cytosolic Ca(2+) activity and according to immunofluorescence Curcumin increased ceramide formation. As shown previously, hypertonic shock (addition of 550mM sucrose), chloride removal and glucose depletion decreased the forward scatter and increased annexin V binding. The effects on annexin binding were enhanced in the presence of Curcumin. Exposure to Curcumin did, however, not significantly enhance the shrinking effect of hypertonic shock or Cl(-) removal and reversed the shrinking effect of glucose withdrawal. The present observations disclose a proeryptotic effect of Curcumin which may affect the life span of circulating erythrocytes.  相似文献   

10.
p38 protein kinase is activated by hyperosmotic shock, participates in the regulation of cell volume sensitive transport and metabolism and is involved in the regulation of various physiological functions including cell proliferation and apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include hyperosmotic shock, which increases cytosolic Ca(2+) activity and ceramide formation. The present study explored whether p38 kinase is expressed in human erythrocytes, is activated by hyperosmotic shock and participates in the regulation of eryptosis. Western blotting was utilized to determine phosphorylation of p38 kinase, forward scatter to estimate cell volume, annexin V binding to depict phosphatidylserine exposure and Fluo3 fluorescence to estimate cytosolic Ca(2+) activity. As a result, erythrocytes express p38 kinase, which is phosphorylated upon osmotic shock (+550 mM sucrose). Osmotic shock decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence, all effects significantly blunted by the p38 kinase inhibitors SB203580 (2 μM) and p38 Inh III (1 μM). In conclusion, p38 kinase is expressed in erythrocytes and participates in the machinery triggering eryptosis following hyperosmotic shock.  相似文献   

11.
Ceramides, which are membrane sphingolipids and key mediators of cell-stress responses, are generated by a family of (dihydro) ceramide synthases (Lass1-6/CerS1-6). Here, we report that brain development features significant increases in sphingomyelin, sphingosine, and most ceramide species. In contrast, C(16:0)-ceramide was gradually reduced and CerS6 was down-regulated in mitochondria, thereby implicating CerS6 as a primary ceramide synthase generating C(16:0)-ceramide. Investigations into the role of CerS6 in mitochondria revealed that ceramide synthase down-regulation is associated with dramatically decreased mitochondrial Ca(2+)-loading capacity, which could be rescued by addition of ceramide. Selective CerS6 complexing with the inner membrane component of the mitochondrial permeability transition pore was detected by immunoprecipitation. This suggests that CerS6-generated ceramide could prevent mitochondrial permeability transition pore opening, leading to increased Ca(2+) accumulation in the mitochondrial matrix. We examined the effect of high CerS6 expression on cell survival in primary oligodendrocyte (OL) precursor cells, which undergo apoptotic cell death during early postnatal brain development. Exposure of OLs to glutamate resulted in apoptosis that was prevented by inhibitors of de novo ceramide biosynthesis, myriocin and fumonisin B1. Knockdown of CerS6 with siRNA reduced glutamate-triggered OL apoptosis, whereas knockdown of CerS5 had no effect: the pro-apoptotic role of CerS6 was not stimulus-specific. Knockdown of CerS6 with siRNA improved cell survival in response to nerve growth factor-induced OL apoptosis. Also, blocking mitochondrial Ca(2+) uptake or decreasing Ca(2+)-dependent protease calpain activity with specific inhibitors prevented OL apoptosis. Finally, knocking down CerS6 decreased calpain activation. Thus, our data suggest a novel role for CerS6 in the regulation of both mitochondrial Ca(2+) homeostasis and calpain, which appears to be important in OL apoptosis during brain development.  相似文献   

12.
Dicoumarol, a widely used anticoagulant, may cause anemia, which may result from enhanced erythrocyte loss due to bleeding or due to accelerated erythrocyte death. Erythrocytes may undergo suicidal death or eryptosis, characterized by cell shrinkage and phospholipid scrambling of the cell membrane. Eryptosis may be triggered by increase of cytosolic Ca(2+)-activity ([Ca(2+)](i)). The present study explored, whether dicoumarol induces eryptosis. [Ca(2+)](i) was estimated from Fluo3-fluorescence, cation channel activity utilizing whole cell patch clamp, cell volume from forward scatter, phospholipid scrambling from annexin-V-binding, and hemolysis from haemoglobin release. Exposure of erythrocytes for 48 hours to dicoumarol (=10 μM) significantly increased [Ca(2+)](i), enhanced cation channel activity, decreased forward scatter, triggered annexin-V-binding and elicited hemolysis. Following exposure to 30 μM dicoumarol, annexin-V-binding affected approximately 15%, and hemolysis 2% of treated erythrocytes. The stimulation of annexin-V-binding by dicoumarol was abrogated in the nominal absence of Ca(2+). In conclusion, dicoumarol stimulates suicidal death of erythrocytes by stimulating Ca(2+) entry and subsequent triggering of Ca(2+) dependent cell membrane scrambling.  相似文献   

13.
The pathogenesis of nonalcoholic steatohepatitis (NASH) is unclear, despite epidemiological data implicating FFAs. We studied the pathogenesis of NASH using lipoapoptosis models. Palmitic acid (PA) induced classical apoptosis of hepatocytes. PA-induced lipoapoptosis was inhibited by acyl-CoA synthetase inhibitor but not by ceramide synthesis inhibitors, suggesting that conversion products other than ceramide are involved. Phospholipase A(2) (PLA(2)) inhibitors blocked PA-induced hepatocyte death, suggesting an important role for PLA(2) and its product lysophosphatidylcholine (LPC). Small interfering RNA for Ca(2+)-independent phospholipase A(2) (iPLA(2)) inhibited the lipoapoptosis of hepatocytes. PA increased LPC content, which was reversed by iPLA(2) inhibitors. Pertussis toxin or dominant-negative Galpha(i) mutant inhibited hepatocyte death by PA or LPC acting through G-protein-coupled receptor (GPCR)/Galpha(i). PA decreased cardiolipin content and induced mitochondrial potential loss and cytochrome c translocation. Oleic acid inhibited PA-induced hepatocyte death by diverting PA to triglyceride and decreasing LPC content, suggesting that FFAs lead to steatosis or lipoapoptosis according to the abundance of saturated/unsaturated FFAs. LPC administration induced hepatitis in vivo. LPC content was increased in the liver specimens from NASH patients. These results demonstrate that LPC is a death effector in the lipoapoptosis of hepatocytes and suggest potential therapeutic values of PLA(2) inhibitors or GPCR/Galpha(i) inhibitors in NASH.  相似文献   

14.
Etoposide (VP-16) a topoisomerase II inhibitor induces apoptosis of tumor cells. The present study was designed to elucidate the mechanisms of etoposide-induced apoptosis in C6 glioma cells. Etoposide induced increased formation of ceramide from sphingomyelin and release of mitochondrial cytochrome c followed by activation of caspase-9 and caspase-3, but not caspase-1. In addition, exposure of cells to etoposide resulted in decreased expression of Bcl-2 with reciprocal increase in Bax protein. z-VAD.FMK, a broad spectrum caspase inhibitor, failed to suppress the etoposide-induced ceramide formation and change of the Bax/Bcl-2 ratio, although it did inhibit etoposide-induced death of C6 cells. Reduced glutathione or N-acetylcysteine, which could reduce ceramide formation by inhibiting sphingomyelinase activity, prevented C6 cells from etoposide-induced apoptosis through blockage of caspase-3 activation and change of the Bax/Bcl-2 ratio. In contrast, the increase in ceramide level by an inhibitor of ceramide glucosyltransferase-1, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol caused elevation of the Bax/Bcl-2 ratio and potentiation of caspase-3 activation, thereby resulting in enhancement of etoposide-induced apoptosis. Furthermore, cell-permeable exogenous ceramides (C2- and C6-ceramide) induced downregulation of Bcl-2, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspases-9 and -3. Taken together, these results suggest that ceramide may function as a mediator of etoposide-induced apoptosis of C6 glioma cells, which induces increase in the Bax/Bcl-2 ratio followed by release of cytochrome c leading to caspases-9 and -3 activation.  相似文献   

15.
Hepatocyte apoptosis has been documented in both clinical and experimental alcoholic liver disease. This study was undertaken to examine the effect of dietary zinc supplementation on hepatic apoptosis in mice subjected to a long-term ethanol exposure. Male adult 129S6 mice fed an ethanol-containing liquid diet for 6 months developed hepatitis, as indicated by neutrophil infiltration and elevation of hepatic keratinocyte chemoattractant (KC) and monocyte chemoattractant protein-1 (MCP-1) levels. Apoptotic cell death was detected in ethanol-exposed mice by a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and was confirmed by the increased activities of caspase-3 and -8. Zinc supplementation attenuated alcoholic hepatitis and reduced the number of TUNEL-positive cells in association with inhibition of caspase activities. Ethanol exposure caused oxidative stress, as indicated by reactive oxygen species accumulation, mitochondrial glutathione depletion, and decreased metallothionein levels in the liver, which were suppressed by zinc supplementation. The mRNA levels of tumor necrosis factor (TNF)-alpha, TNF-R1, FasL, Fas, Fas-associated factor-1, and caspase-3 in the liver were upregulated by ethanol exposure, which were attenuated by zinc supplementation. Zinc supplementation also prevented ethanol-elevated serum and hepatic TNF-alpha levels and TNF-R1 and Fas proteins in the liver. In conclusion, zinc supplementation prevented hepatocyte apoptosis in mice subjected to long-term ethanol exposure, and the action of zinc is likely through suppression of oxidative stress and death receptor-mediated pathways.  相似文献   

16.
Accumulation of lipids in nonadipose tissues can lead to cell dysfunction and cell death, a phenomenon known as lipotoxicity. However, the signaling pathways and mechanisms linking lipid accumulation to cell death are poorly understood. The present study examined the hypothesis that saturated fatty acids disrupt endoplasmic reticulum (ER) homeostasis and promote apoptosis in liver cells via accumulation of ceramide. H4IIE liver cells were exposed to varying concentrations of saturated (palmitate or stearate) or unsaturated (oleate or linoleate) fatty acids. ER homeostasis was monitored using markers of the ER stress response pathway, including phosphorylation of IRE1alpha and eIF2alpha, splicing of XBP1 mRNA, and expression of molecular chaperone (e.g., GRP78) and proapoptotic (CCAAT/enhancer-binding protein homologous protein) genes. Apoptosis was monitored using caspase activity and DNA laddering. Palmitate and stearate induced ER stress, caspase activity, and DNA laddering. Inhibition of caspase activation prevented DNA laddering. Unsaturated fatty acids did not induce ER stress or apoptosis. Saturated fatty acids increased ceramide concentration; however, inhibition of de novo ceramide synthesis did not prevent saturated fatty acid-induced ER stress and apoptosis. Unsaturated fatty acids rescued palmitate-induced ER stress and apoptosis. These data demonstrate that saturated fatty acids disrupt ER homeostasis and induce apoptosis in liver cells via mechanisms that do not involve ceramide accumulation.  相似文献   

17.
Amyloid peptides are known to induce apoptosis in a wide variety of cells. Erythrocytes may similarly undergo suicidal death or eryptosis, which is characterized by scrambling of the cell membrane with subsequent exposure of phosphatidylserine (PS) at the cell surface. Eryptosis is triggered by increase of cytosolic Ca(2+) activity and by activation of acid sphingomyelinase with subsequent formation of ceramide. Triggers of eryptosis include energy depletion and isosmotic cell shrinkage (replacement of extracellular Cl(-) by impermeable gluconate for 24 h). The present study explored whether amyloid peptide Abeta (1-42) could trigger eryptosis and to possibly identify underlying mechanisms. Erythrocytes from healthy volunteers were exposed to amyloid and PS-exposure (annexin V binding), cell volume (forward scatter), cytosolic Ca(2+) activity (Fluo3 fluorescence) and ceramide formation (anti-ceramide antibody) were determined by FACS analysis. Exposure of erythrocytes to the amyloid peptide Abeta (1-42) (> or = 0.5 microM) for 24 h significantly triggered annexin V binding, an effect mimicked to a lesser extent by the amyloid peptide Abeta (1-40) (1 microM). Abeta (1-42) (> or = 1.0 microM) further significantly decreased forward scatter of erythrocytes. The effect of Abeta (1-42) (> or = 0.5 microM) on erythrocyte annexin V binding was paralleled by formation of ceramide but not by significant increase of cytosolic Ca(2+) activity. The presence of Abeta (1-42) further significantly enhanced the eryptosis following Cl(-) depletion but not of glucose depletion for 24 hours. The present observations disclose a novel action of Abeta (1-42), which may well contribute to the pathophysiological effects of amyloid peptides, such as vascular complications in Alzheimer's disease.  相似文献   

18.
Forced overexpression of cyclooxygenase-2 (COX-2) in intestinal cells has been shown to be associated with resistance to apoptosis. However, the role of physiologically-induced COX-2 in the regulation of apoptosis remains unclear. In the present study, we examined whether hepatocyte growth factor (HGF)-induced COX-2 affects ceramide-induced apoptosis in RGM-1 gastric epithelial cells. An externally applied cell permeable ceramide analogue, C2-ceramide, caused RGM-1 cell death in a dose-dependent manner, whereas an inactive ceramide analogue, C2-dihydroceramide, did not. TdT-mediated dUTP nick end labeling (TUNEL) assay showed that the C2-ceramide-induced cell death was apoptosis. Application of HGF rapidly induced the expression of COX-2, and HGF prevented the apoptotic cell death induced by C2-ceramide. However, the anti-apoptotic action of HGF was antagonized by coapplication of NS-398, a selective inhibitor of COX-2. Thus, these results indicate that COX-2 is involved in the survival signaling from HGF in gastric epithelial cells, and suggest a role for physiologically-induced COX-2 in the protection of the cells from apoptosis.  相似文献   

19.
Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis   总被引:16,自引:0,他引:16  
Elevated serum free fatty acids (FFAs) and hepatocyte lipoapoptosis are features of non-alcoholic fatty liver disease. However, the mechanism by which FFAs mediate lipoapoptosis is unclear. Because JNK activation is pivotal in both the metabolic syndrome accompanying non-alcoholic fatty liver disease and cellular apoptosis, we examined the role of JNK activation in FFA-induced lipoapoptosis. Multiple hepatocyte cell lines and primary mouse hepatocytes were treated in culture with monounsaturated fatty acids and saturated fatty acids. Despite equal cellular steatosis, apoptosis and JNK activation were greater during exposure to saturated versus monounsaturated FFAs. Inhibition of JNK, pharmacologically as well as genetically, reduced saturated FFA-mediated hepatocyte lipoapoptosis. Cell death was caspase-dependent and associated with mitochondrial membrane depolarization and cytochrome c release indicating activation of the mitochondrial pathway of apoptosis. JNK-dependent lipoapoptosis was associated with activation of Bax, a known mediator of mitochondrial dysfunction. As JNK can activate Bim, a BH3 domain-only protein capable of binding to and activating Bax, its role in lipoapoptosis was also examined. Small interfering RNA-targeted knock-down of Bim attenuated both Bax activation and cell death. Collectively the data indicate that saturated FFAs induce JNK-dependent hepatocyte lipoapoptosis by activating the proapoptotic Bcl-2 proteins Bim and Bax, which trigger the mitochondrial apoptotic pathway.  相似文献   

20.
Tumor necrosis factor (TNF)-alpha signals cell death and simultaneously induces the generation of ceramide, which is metabolized to sphingosine and sphingosine 1-phosphate (S1P) by ceramidase (CDase) and sphingosine kinase. Because the dynamic balance between the intracellular levels of ceramide and S1P (the "ceramide/S1P rheostat") may determine cell survival, we investigated these sphingolipid signaling pathways in TNF-alpha-induced apoptosis of primary hepatocytes. Endogenous C16-ceramide was elevated during TNF-alpha-induced apoptosis in both rat and mouse primary hepatocytes. The putative acid sphingomyelinase (ASMase) inhibitor imipramine inhibited TNF-alpha-induced apoptosis and C16-ceramide increase as did the knock out of ASMase. Overexpression of neutral CDase (NCDase) inhibited the TNF-alpha-induced increase of C16-ceramide and apoptosis in rat primary hepatocytes. Moreover, NCDase inhibited liver injury and hepatocyte apoptosis in mice treated with D-galactosamine plus TNF-alpha. This protective effect was abrogated by the sphingosine kinase inhibitor N,N-demethylsphingosine, suggesting that the survival effect of NCDase is due to not only C16-ceramide reduction but also S1P formation. Administration of S1P or overexpression of NCDase activated the pro-survival kinase AKT, and overexpression of dominant negative AKT blocked the survival effect of NCDase. In conclusion, activation of ASMase and generation of C16-ceramide contributed to TNF-alpha-induced hepatocyte apoptosis. NCDase prevented apoptosis both by reducing C16-ceramide and by activation of AKT through S1P formation. Therefore, the cross-talk between sphingolipids and AKT pathway may determine hepatocyte apoptosis by TNF-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号