首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The remarkable developmental potential and replicative capacity of human embryonic stem (ES) cells promise an almost unlimited supply of specific cell types for transplantation therapies. Here we describe the in vitro differentiation, enrichment, and transplantation of neural precursor cells from human ES cells. Upon aggregation to embryoid bodies, differentiating ES cells formed large numbers of neural tube-like structures in the presence of fibroblast growth factor 2 (FGF-2). Neural precursors within these formations were isolated by selective enzymatic digestion and further purified on the basis of differential adhesion. Following withdrawal of FGF-2, they differentiated into neurons, astrocytes, and oligodendrocytes. After transplantation into the neonatal mouse brain, human ES cell-derived neural precursors were incorporated into a variety of brain regions, where they differentiated into both neurons and astrocytes. No teratoma formation was observed in the transplant recipients. These results depict human ES cells as a source of transplantable neural precursors for possible nervous system repair.  相似文献   

2.
Existing protocols for the neural differentiation of mouse embryonic stem (ES) cells require extended in vitro culture, yield variable differentiation results or are limited to the generation of selected neural subtypes. Here we provide a set of coculture conditions that allows rapid and efficient derivation of most central nervous system phenotypes. The fate of both fertilization- and nuclear transfer-derived ES (ntES) cells was directed selectively into neural stem cells, astrocytes, oligodendrocytes or neurons. Specific differentiation into gamma-aminobutyric acid (GABA), dopamine, serotonin or motor neurons was achieved by defining conditions to induce forebrain, midbrain, hindbrain and spinal cord identity. Neuronal function of ES cell-derived dopaminergic neurons was shown in vitro by electron microscopy, measurement of neurotransmitter release and intracellular recording. Furthermore, transplantation of ES and ntES cell-derived dopaminergic neurons corrected the phenotype of a mouse model of Parkinson disease, demonstrating an in vivo application of therapeutic cloning in neural disease.  相似文献   

3.
Establishment of a Parkinson's disease (PD) neuron model was attempted with mouse embryonic stem (ES) cells. ES cell lines over-expressing mouse nuclear receptor-related 1 (Nurr1), together with human wild-type and alanine 30 --> proline (A30P) and alanine 53 --> threonine (A53T) mutant alpha-synuclein were established and subjected to differentiation into dopaminergic neurons. The ES cell-derived dopaminergic neurons expressing wild-type or mutant alpha-synuclein exhibited the fundamental characteristics consistent with dopaminergic neurons in the substantia nigra. The ES cell-derived PD model neurons exhibited increased susceptibility to oxidative stress, proteasome inhibition, and mitochondrial inhibition. Cell viability of PD model neurons and the control neurons was similar until 28 days after differentiation. Nonetheless, after that time, PD model neurons gradually began to undergo neuronal death over the course of 1 month, showing cytoplasmic aggregate formation and an increase of insoluble alpha-synuclein protein. Such delayed neuronal death was observed in a mutant alpha-synuclein protein level-dependent manner, which was slightly inhibited by a c-jun N-terminal kinase inhibitor and a caspase inhibitor. Such cell death was not observed when the same ES cell lines were differentiated into oligodendrocytes. The ES cell-derived PD model neurons are considered as prospective candidates for a new prototype modelling PD that would allow better investigation of the underlying neurodegenerative pathophysiology.  相似文献   

4.
Embryonic stem (ES) cells are multipotent progenitors with unlimited developmental potential, and in vitro differentiated ES cell-derived neuronal progenitors can develop into functional neurons when transplanted in the central nervous system. As the capacity of naive primary ES cells to integrate in the adult brain and the role of host neural tissue therein are yet largely unknown, we grafted low densities of undifferentiated mouse ES (mES) cells in adult mouse brain regions associated with neurodegenerative disorders; and we demonstrate that ES cell-derived neurons undergo gradual integration in recipient tissue and acquire morphological and electrophysiological properties indistinguishable from those of host neurons. Only some brain areas permitted survival of mES-derived neural progenitors and formed instructive environments for neuronal differentiation and functional integration of naive mES cells. Hence, region-specific presence of microenvironmental cues and their pivotal involvement in controlling ES cell integration in adult brain stress the importance of recipient tissue characteristics in formulating cell replacement strategies for neurodegenerative disorders.  相似文献   

5.
Although embryonic stem (ES) cell-derived hepatocytes have the capacity for liver engraftment and repopulation, their in vivo hepatic function has not been analyzed yet. We aimed to determine the metabolic function and therapeutic action of ES cell-derived hepatocytes after serial liver repopulations in fumaryl acetoacetate hydrolase knockout (Fah(-/-)) mice. Albumin expressing (Alb(+)) cells were obtained by hepatic differentiation of ES cells using two frequently reported methods. After transplantation, variable levels of liver repopulation were found in Fah(-/-) mice recipients. FAH expressing (FAH(+)) hepatocytes were found either as single cells or as nodules with multiple hepatocytes. After serial transplantation, the proportion of the liver that was repopulated by the re-transplanted FAH(+) hepatocytes increased significantly. ES cell-derived FAH(+) hepatocytes were found in homogenous nodules and corrected the liver metabolic disorder of Fah(-/-) recipients and rescued them from death. ES cell-derived hepatocytes had normal karyotype, hepatocytic morphology and metabolic function both in vitro and in vivo. In conclusion, ES cell-derived hepatocytes were capable of liver repopulation and correction of metabolic defects after serial transplantation. Our results are an important piece of evidence to support future clinical applications of ES cell-derived hepatocytes in treating liver diseases.  相似文献   

6.
7.
Severe acute liver failure, even when transient, must be treated by transplantation and lifelong immune suppression. Treatment could be improved by bioartificial liver (BAL) support, but this approach is hindered by a shortage of human hepatocytes. To generate an alternative source of cells for BAL support, we differentiated mouse embryonic stem (ES) cells into hepatocytes by coculture with a combination of human liver nonparenchymal cell lines and fibroblast growth factor-2, human activin-A and hepatocyte growth factor. Functional hepatocytes were isolated using albumin promoter-based cell sorting. ES cell-derived hepatocytes expressed liver-specific genes, secreted albumin and metabolized ammonia, lidocaine and diazepam. Treatment of 90% hepatectomized mice with a subcutaneously implanted BAL seeded with ES cell-derived hepatocytes or primary hepatocytes improved liver function and prolonged survival, whereas treatment with a BAL seeded with control cells did not. After functioning in the BAL, ES cell-derived hepatocytes developed characteristics nearly identical to those of primary hepatocytes.  相似文献   

8.
Directed differentiation of embryonic stem cells into motor neurons   总被引:52,自引:0,他引:52  
Wichterle H  Lieberam I  Porter JA  Jessell TM 《Cell》2002,110(3):385-397
  相似文献   

9.
We have identified a stromal cell-derived inducing activity (SDIA) that promotes neural differentiation of mouse ES cells. SDIA accumulates on the surface of PA6 stromal cells and induces efficient neuronal differentiation of cocultured ES cells in serum-free conditions without use of either retinoic acid or embryoid bodies. BMP4, which acts as an antineuralizing morphogen in Xenopus, suppresses SDIA-induced neuralization and promotes epidermal differentiation. A high proportion of tyrosine hydroxylase-positive neurons producing dopamine are obtained from SDIA-treated ES cells. When transplanted, SDIA-induced dopaminergic neurons integrate into the mouse striatum and remain positive for tyrosine hydroxylase expression. Neural induction by SDIA provides a new powerful tool for both basic neuroscience research and therapeutic applications.  相似文献   

10.
Embryonic stem (ES) cell lines, derived from the inner cell mass (ICM) of blastocyst-stage embryos, are pluripotent and have a virtually unlimited capacity for self-renewal and differentiation into all cell types of an embryoproper. Both human and mouse ES cell lines are the subject of intensive investigation for potential applications in developmental biology and medicine. ES cells from both sources differentiate in vitro into cells of ecto-, endoand meso-dermal lineages, and robust cardiomyogenic differentiation is readily observed in spontaneously differentiating ES cells when cultured under appropriate conditions. Molecular, cellular and physiologic analyses demonstrate that ES cell-derived cardiomyocytes are functionally viable and that these cell derivatives exhibit characteristics typical of heart cells in early stages of cardiac development. Because terminal heart failure is characterized by a significant loss of cardiomyocytes, the use of human ES cell-derived progeny represents one possible source for cell transplantation therapies. With these issues in mind, this review will focus on the differentiation of pluripotent embryonic stem cells into cardiomyocytes as a developmental model, and the possible use of ES cell-derived cardiomyocytes as source of donor cells.  相似文献   

11.
Induction of definitive endoderm (DE) cells is a prerequisite for the whole process of embryonic stem (ES) cells differentiating into hepatic or pancreatic progenitor cells. We have established an efficient method to induce mouse ES cell-derived DE cells in suspension embryonic body (EB) culture. Similar to previous studies, mouse ES cell-derived DE cells, which were defined as Cxcr4(+) c-Kit(+) , Cxcr4(+) E-cadherin(+) cells or Cxcr4(+) PDGFRa(-) cells, could be induced in the serum-free EBs at Day 4 of induction. The activations of Wnt, Nodal, and FGF signaling pathways in differentiating EBs promoted DE cell differentiation, while activation of BMP4 signaling inhibited the process. In the present study, we found that chemical activation of canonical Wnt signaling pathway by LiCl could synergize with Activin A-mediated Nodal signaling pathway to promote induction of DE cells, and inhibition of Bmp4 signaling by Noggin along with Activin A/LiCl further improved the efficiency of DE cell differentiation. The derived DE cells were proved for their capacities to become hepatic progenitor cells or pancreatic progenitor cells. In conclusion, we significantly improved the efficiency of generating mouse ES cell-derived DE cells by combined Activin A/LiCl/Noggin treatment. Our work will be greatly helpful to generate ES cell-derived hepatic cells and ES cell-derived pancreatic cells for future regenerative medicine.  相似文献   

12.
Infection and injury of neurons by West Nile encephalitis virus   总被引:6,自引:0,他引:6       下载免费PDF全文
West Nile virus (WNV) infects neurons and leads to encephalitis, paralysis, and death in humans, animals, and birds. We investigated the mechanism by which neuronal injury occurs after WNV infection. Neurons in the anterior horn of the spinal cords of paralyzed mice exhibited a high degree of WNV infection, leukocyte infiltration, and degeneration. Because it was difficult to distinguish whether neuronal injury was caused by viral infection or by the immune system response, a novel tissue culture model for WNV infection was established in neurons derived from embryonic stem (ES) cells. Undifferentiated ES cells were relatively resistant to WNV infection. After differentiation, ES cells expressed neural antigens, acquired a neuronal phenotype, and became permissive for WNV infection. Within 48 h of exposure to an exceedingly low multiplicity of infection (5 x 10(-4)), 50% of ES cell-derived neurons became infected, producing nearly 10(7) PFU of infectious virus per ml, and began to die by an apoptotic mechanism. The establishment of a tractable virus infection model in ES cell-derived neurons facilitates the study of the molecular basis of neurotropism and the mechanisms of viral and immune-mediated neuronal injury after infection by WNV or other neurotropic pathogens.  相似文献   

13.
The developmental potential of a uniform population of neural progenitors was tested by implanting them into chick embryos. These cells were generated from retinoic acid-treated mouse embryonic stem (ES) cells, and were used to replace a segment of the neural tube. At the time of implantation, the progenitors expressed markers defining them as Pax6-positive radial glial (RG) cells, which have recently been shown to generate most pyramidal neurons in the developing cerebral cortex. Six days after implantation, the progenitors generated large numbers of neurons in the spinal cord, and differentiated into interneurons and motoneurons at appropriate locations. They also colonized the host dorsal root ganglia (DRG) and differentiated into neurons, but, unlike stem cell-derived motoneurons, they failed to elongate axons out of the DRG. In addition, they neither expressed the DRG marker Brn3a nor the Trk neurotrophin receptors. Control experiments with untreated ES cells indicated that when colonizing the DRG, these cells did elongate axons and expressed Brn3a, as well as Trk receptors. Our results thus indicate that ES cell-derived progenitors with RG characteristics generate neurons in the spinal cord and the DRG. They are able to respond appropriately to local cues in the spinal cord, but not in the DRG, indicating that they are restricted in their developmental potential.  相似文献   

14.
We have established mouse embryonic stem (ES) cell lines from blastocysts derived by transfer of nuclei of fetal neuronal cells. These neuronal cell-derived embryonic cell lines had properties that characterize them as ES cells, including typical cell markers and alkaline phosphatase activity. Moreover, the cells had a normal karyotype and were pluripotent, as they were capable of differentiating into all three germ layers. Although they were derived from neuronal donor nuclei, the cells no longer expressed neuronal markers; however, they were capable of differentiating into cells with neuronal characteristics. These results suggest that the clone-derived cells have fully acquired an ES cell character. Thus, ES cells can be derived from embryos resulting from nuclear transfer, which results in reprogramming of the genetic information and acquisition of pluripotency. ES cells established from somatic cell-derived blastocysts could be useful not only as research tools for studying reprogramming but also as models for cell-based transplantation therapy.  相似文献   

15.
Embryonic stem (ES) cells are pluripotent stem cells and give rise to a variety of differentiated cell types including neurons. To study a molecular basis for differentiation from ES cells to neural cells, we searched for proteins involved in mouse neurogenesis from ES cells to neural stem (NS) cells and neurons by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting, using highly homogeneous cells differentiated from ES cells in vitro. We newly identified seven proteins with increased expression and one protein with decreased expression from ES cells to NS cells, and eight proteins with decreased expression from NS cells to neurons. Western blot analysis confirmed that a tumor-specific transplantation antigen, HS90B, decreased, and an extracellular matrix and membrane glycoprotein (such as laminin)-binding protein, galectin 1 (LEG1), increased in NS cells, and LEG1 and a cell adhesion receptor, laminin receptor (RSSA), decreased in neurons. The results of RT-PCR showed that mRNA of LEG1 was also up-regulated in NS cells and down-regulated in neurons, implying an important role of LEG1 in regulating the differentiation. The differentially expressed proteins identified here provide insight into the molecular basis of neurogenesis from ES cells to NS cells and neurons.  相似文献   

16.
To explore a potential methodology for treating aganglionic megacolon, neural stem cells (NSCs) expressing engineered endothelin receptor type B (EDNRB) and glial cell-derived neurotrophic factor (GDNF) genes were transplanted into the aganglionic megacolon mice. After transplantation, the regeneration of neurons in the colon tissue was observed, and expression levels of differentiation-related genes were determined. Primary culture of NSCs was obtained from the cortex of postnatal mouse brain and infected with recombinant adenovirus expressing EDNRB and GDNF genes. The mouse model of aganglionic megacolon was developed by treating the colon tissue with 0.5 % benzalkonium chloride (BAC) to selectively remove the myenteric nerve plexus that resembles the pathological changes in the human congenital megacolon. The NSCs stably expressing the EDNRB and GDNF genes were transplanted into the benzalkonium chloride-induced mouse aganglionic colon. Survival and differentiation of the implanted stem cells were assessed after transplantation. Results showed that the EDNRB and GDNF genes were able to be expressed in primary culture of NSCs by adenovirus infection. One week after implantation, grafted NSCs survived and differentiated into neurons. Compared to the controls, elevated expression of EDNRB and GDNF was determined in BAC-induced aganglionic megacolon mice with partially improved intestinal function. Those founding indicated that the genes transfected into NSCs were expressed in vivo after transplantation. Also, this study provided favorable support for the therapeutic potential of multiple gene-modified NSC transplantation to treat Hirschsprung’s disease, a congenital disorder of the colon in which ganglion cells are absent.  相似文献   

17.
Dr. Robert K. Yu’s research showed for the first time that the composition of glycosphingolipids is tightly regulated during embryo development. Studies in our group showed that the glycosphingolipid precursor ceramide is also critical for stem cell differentiation and apoptosis. Our new studies suggest that ceramide and its derivative, sphingosine-1-phosphate (S1P), act synergistically on embryonic stem (ES) cell differentiation. When using neural precursor cells (NPCs) derived from ES cells for transplantation, residual pluripotent stem (rPS) cells pose a significant risk of tumor formation after stem cell transplantation. We show here that rPS cells did not express the S1P receptor S1P1, which left them vulnerable to ceramide or ceramide analog (N-oleoyl serinol or S18)-induced apoptosis. In contrast, ES cell-derived NPCs expressed S1P1 and were protected in the presence of S1P or its pro-drug analog FTY720. Consistent with previous studies, FTY720-treated NPCs differentiated predominantly toward oligodendroglial lineage as tested by the expression of the oligodendrocyte precursor cell (OPC) markers Olig2 and O4. As the consequence, a combined administration of S18 and FTY720 to differentiating ES cells eliminated rPS cells and promoted oligodendroglial differentiation. In addition, we show that this combination promoted differentiation of ES cell-derived NPCs toward oligodendroglial lineage in vivo after transplantation into mouse brain.  相似文献   

18.
Pluripotent embryonic stem (ES) cells are the most versatile cells, with the potential to differentiate into all types of cell lineages including neural precursor cells (NPCs), which can be expanded in large numbers for significant periods of time to provide a reliable cell source for transplantation in neurodegenerative disorders such as Parkinson's disease (PD). In the present study, we used the MESPU35 mouse ES cell line, which expresses enhanced green fluorescent protein that enables one to distinguish between transplanted cells and cells of host origin. Embryoid bodies (EBs) were formed and were induced to NPCs in N2 selection medium plus fibronectin. Praxiology and immunohistochemistry methods were used to observe the survival, differentiation, and therapeutic effect of NPCs after grafted into the striatum of PD rats. We found that mouse ESc were differentiated into nestin-positive NPCs 6 days after the EBs formed and cultured in the N2 selection medium. The number of survival NPCs was increased significantly by fibronectin. About 23.76+/-2.29% of remaining cells were tyrosine hydroxylase (TH)-positive 12 days after NPCs were cultured in N2 selective medium. The survival rates of NPCs were 2.10+/-0.41% and about 90.90+/-3.00% of the engrafted NPCs were TH-positive 6 weeks after transplantation into the striatum of PD rats. The rotation of PD rats was relieved 3 weeks after the NPCs transplantation and this effect was kept for at least 6 weeks. It suggests that most of the survival NPCs derived from ES cells differentiated into TH-positive neurons after grafted into the striatum of PD rats, which produces therapeutic effect on PD.  相似文献   

19.
Hepatocyte transplantation is considered a potential treatment for liver diseases and a bridge for patients awaiting liver transplantation, but its application has been hampered by a limited supply of hepatocytes. Embryonic stem (ES) cells established from early mouse and human embryos are pluripotent, and proliferate indefinitely in an undifferentiated state in vitro. Since differentiation from ES cells seems to recapitulate early embryonic development, if hepatocytes could be efficiently generated in vitro, ES cells might become a source of transplantable hepatocytes for cell replacement therapy. Hepatocytes have been generated from ES cells in vitro, and the hepatocytes differentiated from ES cells have been found to express many hepatocyte-related genes and perform hepatic functions. However, it remains unclear whether the hepatocytes differentiated from ES cells are derived from definitive endoderm or primitive endoderm. Because visceral endoderm, which expresses many hepatocyte-related genes, is derived from primitive endoderm and is fated to form extraembryonic yolk sac tissues, not to form hepatocytes, ES cells must be directed to a definitive endoderm lineage in vitro. This article discusses the differentiation of ES cells into hepatocytes in vitro in comparison with early embryogenesis, and describes the efficacy of ES cell-derived hepatocyte transplantation.  相似文献   

20.
Ectopic expression of HoxB4 in embryonic stem (ES) cells leads to an efficient production of hematopoietic cells, including hematopoietic stem/progenitor cells. Previous studies have utilized a constitutive HoxB4 expression system or tetracycline-regulated HoxB4 expression system to induce hematopoietic cells from ES cells. However, these methods cannot be applied therapeutically due to the risk of transgenes being integrated into the host genome. Here, we report the promotion of hematopoietic differentiation from mouse ES cells and induced pluripotent stem (iPS) cells by transient HoxB4 expression using an adenovirus (Ad) vector. Ad vector could mediate efficient HoxB4 expression in ES cell-derived embryoid bodies (ES-EBs) and iPS-EBs, and its expression was decreased during cultivation, showing that Ad vector transduction was transient. A colony-forming assay revealed that the number of hematopoietic progenitor cells with colony-forming potential in HoxB4-transduced cells was significantly increased in comparison with that in non-transduced cells or LacZ-transduced cells. HoxB4-transduced cells also showed more efficient generation of CD41-, CD45-, or Sca-1-positive cells than control cells. These results indicate that transient, but not constitutive, HoxB4 expression is sufficient to augment the hematopoietic differentiation of ES and iPS cells, and that our method would be useful for clinical applications, such as cell transplantation therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号