首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this study, we sequenced both two mitochondrial genes (COI and 16S rRNA) and nuclear genes (28S rRNA and elongation factor‐1α) from 71 species of Odonata that represent 7 superfamilies in 3 suborders. Phylogenetic testing for each two concatenated gene sequences based on function (ribosomal vs protein‐coding genes) and origin (mitochondrial vs nuclear genes) proved limited resolution. Thus, four concatenated sequences were utilized to test the previous phylogenetic hypotheses of higher taxa of Odonata via Bayesian inference (BI) and maximum likelihood (ML) algorithms, along with the data partition by the BI method. As a result, three slightly different topologies were obtained, but the BI tree without partition was slightly better supported by the topological test. This topology supported the suborders Anisoptera and Zygoptera each being a monophyly, and the close relationship of Anisozygoptera to Anisoptera. All the families represented by multiple taxa in both Anisoptera and Zygoptera were consistently revealed to each be a monophyly with the highest nodal support. Unlike consistent and robust familial relationships in Zygoptera those of Anisoptera were partially unresolved, presenting the following relationships: ((((Libellulidae + Corduliidae) + Macromiidae) + Gomphidae + Aeshnidae) + Anisozygoptera) + (((Coenagrionidae + Platycnemdidae) + Calopterygidae) + Lestidae). The subfamily Sympetrinae, represented by three genera in the anisopteran family Libellulidae, was not monophyletic, dividing Crocothemis and Deielia in one group together with other subfamilies and Sympetrum in another independent group.  相似文献   

2.
The phylogenetic relationships of the African lungfish (Protopterus dolloi) and the coelacanth (Latimeria chalumnae) with respect to tetrapods were analyzed using complete mitochondrial genome DNA sequences. A lungfish + coelancanth clade was favored by maximum parsimony (although this result is dependent on which transition:transversion weights are applied), and a lungfish + tetrapod clade was supported by neighbor-joining and maximum-likelihood analyses. These two hypotheses received the strongest statistical and bootstrap support to the exclusion of the third alternative, the coelacanth + tetrapod sister group relationship. All mitochondrial protein coding genes combined favor a lungfish + tetrapod grouping. We can confidently reject the hypothesis that the coelacanth is the closest living relative of tetrapods. When the complete mitochondrial sequence data were combined with nuclear 28S rRNA gene data, a lungfish + coelacanth clade was supported by maximum parsimony and maximum likelihood, but a lungfish + tetrapod clade was favored by neighbor-joining. The seeming conflicting results based on different data sets and phylogenetic methods were typically not statistically strongly supported based on Kishino-Hasegawa and Templeton tests, although they were often supported by strong bootstrap values. Differences in rate of evolution of the different mitochondrial genes (slowly evolving genes such as the cytochrome oxidase and tRNA genes favored a lungfish + coelacanth clade, whereas genes of relatively faster substitution rate, such as several NADH dehydrogenase genes, supported a lungfish + tetrapod grouping), as well as the rapid radiation of the lineages back in the Devonian, rather than base compositional biases among taxa seem to be directly responsible for the remaining uncertainty in accepting one of the two alternate hypotheses.  相似文献   

3.
Xia X  Xie Z  Kjer KM 《Systematic biology》2003,52(3):283-295
Previous phylogenetic analyses of tetrapod 18S ribosomal RNA (rRNA) sequences support the grouping of birds with mammals, whereas other molecular data, and morphological and paleontological data favor the grouping of birds with crocodiles. The 18S rRNA gene has consequently been considered odd, serving as "definitive evidence of different genes providing significantly different estimates of phylogeny in higher organisms" (p. 156; Huelsenbeck et al., 1996, Trends Ecol. Evol. 11:152-158). Our research indicates that the previous discrepancy of phylogenetic results between the 18S rRNA gene and other genes is caused mainly by (1) the misalignment of the sequences, (2) the inappropriate use of the frequency parameters, and (3) poor sequence quality. When the sequences are aligned with the aide of the secondary structure of the 18S rRNA molecule and when the frequency parameters are estimated either from all sites or from the variable domains where substitutions have occurred, the 18S rRNA sequences no longer support the grouping of the avian species with the mammalian species.  相似文献   

4.
Analysis of 16S rRNA gene sequences has become the primary method for determining prokaryotic phylogeny. Phylogeny is currently the basis for prokaryotic systematics. Therefore, the validity of 16S rRNA gene-based phylogenetic analyses is of fundamental importance for prokaryotic systematics. Discrepancies between 16S rRNA gene analyses and DNA-DNA hybridization and phenotypic analyses have been noted in the genus Helicobacter. To clarify these discrepancies, we sequenced the 23S rRNA genes for 55 helicobacter strains representing 41 taxa (>2,700 bases per sequence). Phylogenetic-tree construction using neighbor-joining, parsimony, and maximum likelihood methods for 23S rRNA gene sequence data yielded stable trees which were consistent with other phenotypic and genotypic methods. The 16S rRNA gene sequence-derived trees were discordant with the 23S rRNA gene trees and other data. Discrepant 16S rRNA gene sequence data for the helicobacters are consistent with the horizontal transfer of 16S rRNA gene fragments and the creation of mosaic molecules with loss of phylogenetic information. These results suggest that taxonomic decisions must be supported by other phylogenetically informative macromolecules, such as the 23S rRNA gene, when 16S rRNA gene-derived phylogeny is discordant with other credible phenotypic and genotypic methods. This study found Wolinella succinogenes to branch with the unsheathed-flagellum cluster of helicobacters by 23S rRNA gene analyses and whole-genome comparisons. This study also found intervening sequences (IVSs) in the 23S rRNA genes of strains of 12 Helicobacter species. IVSs were found in helices 10, 25, and 45, as well as between helices 31' and 27'. Simultaneous insertion of IVSs at three sites was found in H. mesocricetorum.  相似文献   

5.
Phylogenetic relationships among species of the genus Parnassius and its related taxa were analyzed by comparing nucleotide sequences of mitochondrial 16S ribosomal RNA (504 sites) and NADH-dehydrogenase subunit 1 (469 sites). In the phylogenetic trees, Parnassius was found to be most closely related to Hypermnestra helios, whereas Archon apollinus, which has been classified in the tribe Parnassiini together with Parnassius and Hypermnestra, was more closely related to members of the tribe Zerynthiini. Within the Parnassius clade, six major clades corresponding to species groups were well supported, although the phylogenetic relationships among them were not clear. Although the results of the present study were in agreement with those of a previous phylogenetic study based on mitochondrial NADH-dehydrogenase subunit 5 sequences, our study strongly supported a close relationship between Parnassius and Hypermnestra, which was not well supported in the previous study.  相似文献   

6.
Genes selected for a phylogenetic study need to contain conserved information that reflects the phylogenetic history at the specific taxonomic level of interest. Mitochondrial ribosomal genes have been used for a wide range of phylogenetic questions in general and in anuran systematics in particular. We checked the plausibility of phylogenetic reconstructions in anurans that were built from commonly used 12S and 16S rRNA gene sequences. For up to 27 species arranged in taxon sets of graded inclusiveness, we inferred phylogenetic hypotheses based on different a priori decisions, i.e. choice of alignment method and alignment parameters, including/excluding variable sites, choice of reconstruction algorithm and models of evolution. Alignment methods and parameters, as well as taxon sampling all had notable effects on the results leading to a large number of conflicting topologies. Very few nodes were supported in all of the analyses. Data sets in which fast evolving and ambiguously aligned sites had been excluded performed worse than the complete data sets. There was moderate support for the monophyly of the Discoglossidae, Pelobatoidea, Pelobatidae and Pipidae. The clade Neobatrachia was robustly supported and the intrageneric relationships within Bombina and Discoglossus were well resolved indicating the usefulness of the genes for relatively recent phylogenetic events. Although 12S and 16S rRNA genes seem to carry some phylogenetic signal of deep (Mesozoic) splitting events the signal was not strong enough to resolve consistently the inter‐relationships of major clades within the Anura under varied methods and parameter settings.  相似文献   

7.
8.
An analysis of partial sequences of the 16S ribosomal rRNA gene (582 bp) of 20 poison frog species (Dendrobatidae) confirmed their phylogenetic relationships to bufonid and leptodactylid frogs. Representatives of the ranoid families and subfamilies Raninae, Mantellinae, Petropedetinae, Cacosterninae, Arthroleptidae, Astylosternidae, and Microhylidae did not cluster as sister group of the Dendrobatidae. Similar results were obtained in an analysis using a partial sequence of the 12S gene (350 bp) in a reduced set of taxa and in a combined analysis. Within the Dendrobatidae, our data supported monophyly of the genus Phyllobates but indicated paraphyly of Epipedobates and Colostethus. Minyobates clustered within Dendrobates, contradicting its previously assumed phylogenetic position. Phobobates species clustered as a monophyletic unit within Epipedobates. Allobates was positioned in a group containing two Colostethus species, indicating that lack of amplexus, presence of skin alkaloids, and aposematic coloration evolved independently in Allobates and the remaining aposematic dendrobatids.  相似文献   

9.
Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ribosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Theileria stocks that were infective to cattle and sheep. The complete 28S rRNA gene is relatively difficult to amplify and its conserved region is not important for phylogenetic study. Therefore, we selected the D2-D3 region from the complete 28S rRNA sequences for phylogenetic analysis. Our analyses of 28S rRNA gene sequences showed that the 28S rRNA was useful as a phylogenetic marker for analyzing the relationships among Theileria spp. in ruminants. In addition, the D2-D3 region was a short segment that could be used instead of the whole 28S rRNA sequence during the phylogenetic analysis of Theileria, and it may be an ideal DNA barcode.  相似文献   

10.
Regions of the mitochondrial genome were sequenced and analysed in representative species of poison frogs, in order to investigate phylogenetic relationships within the family Dendrobatidae. Mitochondrial DNA (mfDNA) fragments from three gene regions; cytochrome b, 16S ribosomal RNA (rRNA), and 12S rRNA, provided 1198 base pairs of DNA sequence and 589 informative sites. Phylogenetic analysis using parsimony was used to infer the evolutionary relationships among the species in the survey. Our analysis supported previous partitions of species into the genera Epipedobates, Phyllobates and Dendrobates , with two exceptions; Epipedobates (Allobates) femoralis was placed outside the clade containing the other toxic dendrobatids, and Minyobates minutus was placed within the genus Dendrobates. Genetic distances estimated between all pairs of taxa using the Kimura 2-parameter model indicated substantial genetic divergence between species, particularly those found in Amazonia. Time of divergence estimates were highly variable depending on gene region, but even the lowest estimates were inconsistent with the Pleistocene Refugia hypothesis.  相似文献   

11.
Phylogenetic analyses of the family Trypanosomatidae have been conducted using both 18S rRNA gene sequences and a variety of protein sequences. Using a variety of phylogenetic methods, 18S rRNA phylogenies indicate that the genus Trypanosoma is not monophyletic. Rather, they suggest that the American and African trypanosomes constitute distinct clades. By contrast, phylogenetic analyses of available sequences in 42 protein families gene generally supported monophyly of the genus Trypanosoma. One possible explanation for these conflicting results is poor taxon sampling in the case of protein coding genes, most of which have been sequenced for only a few species of Trypanosomatidae.  相似文献   

12.
Phylogenetic relationships among nematodes of the strongylid superfamily Metastrongyloidea were analyzed using partial sequences from the large-subunit ribosomal RNA (LSU rRNA) and small-subunit ribosomal RNA (SSU rRNA) genes. Regions of nuclear ribosomal DNA (rDNA) were amplified by polymerase chain reaction, directly sequenced, aligned, and phylogenies inferred using maximum parsimony. Phylogenetic hypotheses inferred from the SSU rRNA gene supported the monophyly of representative taxa from each of the 7 currently accepted metastrongyloid families. Metastrongyloid taxa formed the sister group to representative trichostrongyloid sequences based on SSU data. Sequences from either the SSU or LSU RNA regions alone provided poor resolution for relationships within the Metastrongyloidea. However, a combined analysis using sequences from all rDNA regions yielded 3 equally parsimonious trees that represented the abursate Filaroididae as polyphyletic, Parafilaroides decorus as the sister species to the monophyletic Pseudaliidae, and a sister group relationship between Oslerus osleri and Metastrongylus salmi. Relationships among 3 members of the Crenosomatidae, and 1 representative of the Skrjabingylidae (Skrjabingylus chitwoodorum) were not resolved by these combined data. However, members of both these groups were consistently resolved as the sister group to the other metastrongyloid families. These relationships are inconsistent with traditional classifications of the Metastrongyloidea and existing hypotheses for their evolution.  相似文献   

13.
We performed a comparative study of partial rDNA sequences from a variety of Coleoptera taxa to construct an annotated alignment based on secondary structure information, which in turn, provides improved rRNA structure models useful for phylogenetic reconstruction. Subsequent phylogenetic analysis was performed to test monophyly and interfamilial relationships of the megadiverse plant feeding beetle group known as ‘Phytophaga’ (Curculionoidea and Chrysomeloidea), as well as to discover their closest relatives among the Cucujiformia. Parsimony and Bayesian analyses were performed based on the structural alignment of segments of 18S rRNA (variable regions V4‐V5, V7‐V9) and 28S rRNA (expansion segment D2). A total of 104 terminal taxa of Coleoptera were included: 96 species of Cucujiformia beetles, representing the families and most ‘subfamilies’ of weevils and chrysomeloids (Phytophaga), as well as several families of Cleroidea, Tenebrionoidea and Cucujoidea, and eight outgroups from three other polyphagan series: Scarabaeiformia, Elateriformia and Bostrichiformia. The results from the different methods of analysis agree — recovering the monophyly of the ‘Phytophaga’, including Curculionoidea and Chrysomeloidea as sister groups. The curculionoid and chrysomeloid phylogeny recovered from the aligned 18S and 28S rDNA segments, which is independent of morphological data, is in agreement with recent hypotheses or concepts based on morphological evidence, particularly with respect to familial relationships. Our results provide clues about the evolutionary origin of the phytophagan beetles within the megaclade Cucujiformia, suggesting that the sister group of ‘Curculionoidea + Chrysomeloidea’ is a clade of the ‘Cucujoidea’, represented in this study by species in Boganiidae, Erotylidae, Nitidulidae, Cucujidae and Silvanidae. The Coccinellidae and Endomychidae are not grouped with the latter, and the remaining terminal taxa are nested in Tenebrionoidea and Cleroidea. We propose that the combination of structurally aligned ribosomal RNA gene regions 18S (V4‐V5, V7‐V9) and 28S (D2) are useful in testing monophyly and resolving relationships among beetle superfamilies and families.  相似文献   

14.
The phylogenetic diversity of an oligotrophic marine picoplankton community was examined by analyzing the sequences of cloned ribosomal genes. This strategy does not rely on cultivation of the resident microorganisms. Bulk genomic DNA was isolated from picoplankton collected in the north central Pacific Ocean by tangential flow filtration. The mixed-population DNA was fragmented, size fractionated, and cloned into bacteriophage lambda. Thirty-eight clones containing 16S rRNA genes were identified in a screen of 3.2 x 10(4) recombinant phage, and portions of the rRNA gene were amplified by polymerase chain reaction and sequenced. The resulting sequences were used to establish the identities of the picoplankton by comparison with an established data base of rRNA sequences. Fifteen unique eubacterial sequences were obtained, including four from cyanobacteria and eleven from proteobacteria. A single eucaryote related to dinoflagellates was identified; no archaebacterial sequences were detected. The cyanobacterial sequences are all closely related to sequences from cultivated marine Synechococcus strains and with cyanobacterial sequences obtained from the Atlantic Ocean (Sargasso Sea). Several sequences were related to common marine isolates of the gamma subdivision of proteobacteria. In addition to sequences closely related to those of described bacteria, sequences were obtained from two phylogenetic groups of organisms that are not closely related to any known rRNA sequences from cultivated organisms. Both of these novel phylogenetic clusters are proteobacteria, one group within the alpha subdivision and the other distinct from known proteobacterial subdivisions. The rRNA sequences of the alpha-related group are nearly identical to those of some Sargasso Sea picoplankton, suggesting a global distribution of these organisms.  相似文献   

15.
The complete 12S ribosomal RNA(rRNA) sequences from 23 gobioid species and nine diverse assortments of other fish species were employed to establish a core secondary structure model for fish 12S rRNA. Of the 43 stems recognized, 41 were supported by at least some compensatory evidence among vertebrates. The rates of nucleotide substitution were lower in stems than in loops. This may produce less phylogenetic information in stems when recently diverged taxa are compared. An analysis of compensatory substitution shows that the percentage of covariation is 68%, and the weighting factor for phylogenetic analyses to account for the dependence of mutations should be 0.66. Different stem-loop weighting schemes applied to the analyses of phylogenetic relationships of the Gobioidei indicate that down-weighting paired regions because of nonindependence could not improve the present phylogenetic analysis. A biased nucleotide composition (adenine% [A%] > thymine% [T%], cytosine% [C%] > guanine% [G%]) in the loop regions was also observed in the mammalian counterpart. The excess of A and C in the loop regions may be because of the asymmetric mechanism of mtDNA replication, which leads to the spontaneous deamination of C and A. This process may also be responsible for a transition-transversion bias and the patterns of nucleotide substitutions in both stems and loops.  相似文献   

16.
Recent efforts to reconstruct the phylogenetic position of the insect order Strepsiptera have elicited a major controversy in molecular phylogenetics. We sequenced the 5.8S rDNA and major parts of the 28S rDNA 5′ region of the strepsipteran speciesStylops melittae.Their evolutionary dynamics were analyzed together with previously published insect rDNA sequences to identify tree estimation bias risks and to explore additional sources of phylogenetic information. Several major secondary structure changes were found as being autapomorphic for the Diptera, the Strepsiptera, or the Archaeognatha. Besides elevated substitution rates a significant AT bias was present in dipteran and strepsipteran 28S rDNA which, however, was restricted to stem sites in the Diptera while also affecting single-stranded sites in the Strepsiptera. When dipteran taxa were excluded from tree estimation all methods consistently supported the placement of Strepsiptera to within the Holometabola. When dipteran taxa were included maximum likelihood continued to favor a sister-group relationship of Strepsiptera with Mecoptera while remaining methods strongly supported a sister-group relationship with Diptera. Parametric bootstrap analysis revealed maximum likelihood as a consistent estimator if rate heterogeneity across sites was taken into account. Though the position of Strepsiptera within Holometabola remains elusive, we conclude that the evolution of dipteran and strepsipteran rDNA involved similar yet independent changes of substitution parameters.  相似文献   

17.
张国萍  王蔚  朱世杰  申煜  常弘 《四川动物》2005,24(4):500-506
鹳形目鸟类的传统分类一直存在分歧,而近期的分子系统学研究大多只用单个基因,其结论的可信度需要进一步验证.本文通过核c-mos基因和线粒体12S rRNA基因序列分别和合并分析,采用分子系统学方法探讨了鹳形目6科12种鸟类的系统发生关系.文中测出鹳形目鸟类6种核c-mos基因的片断序列,结合来自Genebank的其他种类的c-mos和12S rRNA基因序列,分别经Clustal W软件对位排列后,以原鸡为外类群用最大似然法、邻接法和最大简约法建立系统树.系统树分析表明, 鹳形目6科之间的系统发生关系总结为:(鹭科,((鹮科,美洲鹫科),(鹳科,(鲸头鹳科,锤头鹳科)))).鹭科7个属之间的系统发生关系总结为:(麻(开鸟)属(夜鹭属(池鹭属(苍鹭属(中白鹭属(白鹭属,大白鹭属)))))).分别基于两个单基因的系统树有一定差异,而基于合并数据的系统树支持率和分辨率都高于基于单基因的系统树,表明使用在遗传上相对独立的分子数据合并建立系统树有较高的可信度和分辨率,是一种更好的研究方法.  相似文献   

18.
Investigating the evolutionary relationships of the major groups of Apicomplexa remains an important area of study. Morphological features and host-parasite relationships continue to be important in the systematics of the adeleorinid coccidia (suborder Adeleorina), but the systematics of these parasites have not been well-supported or have been constrained by data that were lacking or difficult to interpret. Previous phylogenetic studies of the Adeleorina have been based on morphological and developmental characters of several well-described species or based on nuclear 18S ribosomal DNA (rDNA) sequences from taxa of limited taxonomic diversity. Twelve new 18S rDNA sequences from adeleorinid coccidia were combined with published sequences to study the molecular phylogeny of taxa within the Adeleorina and to investigate the evolutionary relationships of adeleorinid parasites within the Apicomplexa. Three phylogenetic methods supported strongly that the suborder Adeleorina formed a monophyletic clade within the Apicomplexa. Most widely recognized families within the Adeleorina were hypothesized to be monophyletic in all analyses, although the single Hemolivia species included in the analyses was the sister taxon to a Hepatozoon sp. within a larger clade that contained all other Hepatozoon spp. making the family Hepatozoidae paraphyletic. There was an apparent relationship between the various clades generated by the analyses and the definitive (invertebrate) host parasitized and, to lesser extent, the type of intermediate (vertebrate) host exploited by the adeleorinid parasites. We conclude that additional taxon sampling and use of other genetic markers apart from 18S rDNA will be required to better resolve relationships among these parasites.  相似文献   

19.
Diplomonads, such as Giardia, and their close relatives retortamonads have been proposed as early-branching eukaryotes that diverged before the acquisition-retention of mitochondria, and they have become key organisms in attempts to understand the evolution of eukaryotic cells. In this phylogenetic study we focus on a series of eukaryotes suggested to be relatives of diplomonads on morphological grounds, the "excavate taxa". Phylogenies of small subunit ribosomal RNA (SSU rRNA) genes, alpha-tubulin, beta-tubulin, and combined alpha- + beta-tubulin all scatter the various excavate taxa across the diversity of eukaryotes. But all phylogenies place the excavate taxon Carpediemonas as the closest relative of diplomonads (and, where data are available, retortamonads). This novel relationship is recovered across phylogenetic methods and across various taxon-deletion experiments. Statistical support is strongest under maximum-likelihood (ML) (when among-site rate variation is modeled) and when the most divergent diplomonad sequences are excluded, suggesting a true relationship rather than an artifact of long-branch attraction. When all diplomonads are excluded, our ML SSU rRNA tree actually places retortamonads and Carpediemonas away from the base of the eukaryotes. The branches separating excavate taxa are mostly not well supported (especially in analyses of SSU rRNA data). Statistical tests of the SSU rRNA data, including an "expected likelihood weights" approach, do not reject trees where excavate taxa are constrained to be a clade (with or without parabasalids and Euglenozoa). Although diplomonads and retortamonads lack any mitochondria-like organelle, Carpediemonas contains double membrane-bounded structures physically resembling hydrogenosomes. The phylogenetic position of Carpediemonas suggests that it will be valuable in interpreting the evolutionary significance of many molecular and cellular peculiarities of diplomonads.  相似文献   

20.
Relationships among the ecdysozoans, or molting animals, have been difficult to resolve. Here, we use nearly complete 28S+18S ribosomal RNA gene sequences to estimate the relations of 35 ecdysozoan taxa, including newly obtained 28S sequences from 25 of these. The tree-building algorithms were likelihood-based Bayesian inference and minimum-evolution analysis of LogDet-transformed distances, and hypotheses were tested wth parametric bootstrapping. Better taxonomic resolution and recovery of established taxa were obtained here, especially with Bayesian inference, than in previous parsimony-based studies that used 18S rRNA sequences (or 18S plus small parts of 28S). In our gene trees, priapulan worms represent the basal ecdysozoans, followed by nematomorphs, or nematomorphs plus nematodes, followed by Panarthropoda. Panarthropoda was monophyletic with high support, although the relationships among its three phyla (arthropods, onychophorans, tardigrades) remain uncertain. The four groups of arthropods-hexapods (insects and related forms), crustaceans, chelicerates (spiders, scorpions, horseshoe crabs), and myriapods (centipedes, millipedes, and relatives)-formed two well-supported clades: Hexapoda in a paraphyletic crustacea (Pancrustacea), and 'Chelicerata+Myriapoda' (a clade that we name 'Paradoxopoda'). Pycnogonids (sea spiders) were either chelicerates or part of the 'chelicerate+myriapod' clade, but not basal arthropods. Certain clades derived from morphological taxonomy, such as Mandibulata, Atelocerata, Schizoramia, Maxillopoda and Cycloneuralia, are inconsistent with these rRNA data. The 28S gene contained more signal than the 18S gene, and contributed to the improved phylogenetic resolution. Our findings are similar to those obtained from mitochondrial and nuclear (e.g., elongation factor, RNA polymerase, Hox) protein-encoding genes, and should revive interest in using rRNA genes to study arthropod and ecdysozoan relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号