首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A study was carried out to determine some of the factors that might distinguish transient from chronic hepadnavirus infection. First, to better characterize chronic infection, Pekin ducks, congenitally infected with the duck hepatitis B virus (DHBV), were used to assess age-dependent variations in viremia, percentage of DHBV-infected hepatocytes, and average levels of DNA replication intermediates in the cytoplasm and of covalently closed circular DNA in the nuclei of infected hepatocytes. Levels of viremia and viral DNA were found to peak at about the time of hatching but persisted at relatively constant levels in chronically infected birds up to 2 years of age. The percentage of infected hepatocytes was also constant, with DHBV replication in virtually 100% of hepatocytes in all birds. Next, we found that adolescent ducks inoculated intravenously with a large dose of DHBV also developed massive infection of hepatocytes with an early but low-level viremia, followed by rapid development of a neutralizing antibody response. No obvious quantitative or qualitative differences between transiently and chronically infected liver tissue were detected in the intracellular markers of viral replication examined. However, in the adolescent duck experiment, DHBV infection was rapidly cleared from the liver even when up to 80% of hepatocytes were initially infected. In all of these ducks, clearance of infection was accompanied by only a mild hepatitis, with no evidence that massive cell death contributed to the clearance. This finding suggested that mechanisms in addition to immune-mediated destruction of hepatocytes might make major contributions to clearance of infections, including physiological turnover of hepatocytes in the presence of a neutralizing antibody response and/or spontaneous loss of the capacity of hepatocytes to support virus replication.  相似文献   

2.
The efficacy of DNA vaccines encoding the duck hepatitis B virus (DHBV) pre-S/S and S proteins were tested in Pekin ducks. Plasmid pcDNA I/Amp DNA containing the DHBV pre-S/S or S genes was injected intramuscularly three times, at 3-week intervals. All pre-S/S and S-vaccinated ducks developed total anti-DHBs and specific anti-S antibodies with similar titers reaching 1/10,000 to 1/50,000 and 1/2,500 to 1/4,000, respectively, after the third vaccination. However, following virus challenge, significant differences in the rate of virus removal from the bloodstream and the presence of virus replication in the liver were found between the groups. In three of four S-vaccinated ducks, 90% of the inoculum was removed between <5 and 15 min postchallenge (p.c.) and no virus replication was detected in the liver at 4 days p.c. In contrast, in all four pre-S/S-vaccinated ducks, 90% of the inoculum was removed between 60 and 90 min p.c. and DHBsAg was detected in 10 to 40% of hepatocytes. Anti-S serum abolished virus infectivity when preincubated with DHBV before inoculation into 1-day-old ducklings and primary duck hepatocyte cultures, while anti-pre-S/S serum showed very limited capacity to neutralize virus infectivity in these two systems. Thus, although both DNA vaccines induced high titers of anti-DHBs antibodies, anti-S antibodies induced by the S-DNA construct were highly effective in neutralizing virus infectivity while similar levels of anti-S induced by the pre-S/S-DNA construct conferred only very limited protection. This phenomenon requires further clarification, particularly in light of the development of newer HBV vaccines containing pre-S proteins and a possible discrepancy between anti-HBs titers and protective efficacy.  相似文献   

3.
Antisense therapy of hepatitis B virus infection   总被引:2,自引:0,他引:2  
Chronic infection with the hepatitis B virus (HBV) is a major health problem worldwide. The only established therapy is interferon-a with an efficacy of only 30–40% in highly selected patients. The discovery of animal viruses closely related to the HBV has contributed to active research on antiviral therapy of chronic hepatitis B. The animal model tested and described in this article are Peking ducks infected with the duck hepatitis B virus (DHBV). Molecular therapeutic strategies aimed at blocking gene expression include antisense DNA. An antisense oligodeoxynucleotide directed against the 5′-region of the preS gene of DHBV inhibited viral replication and gene expression in vitro in primary duck hepatocytes and in vivo in Peking ducks. These results demonstrate the potential clinical use of antisense DNA as antiviral therapeutics.  相似文献   

4.
Entecavir (ETV), a potent inhibitor of the hepadnaviral polymerases, prevented the development of persistent infection when administered in the early stages of duck hepatitis B virus (DHBV) infection. In a preliminary experiment, ETV treatment commenced 24 h before infection showed no significant advantage over simultaneous ETV treatment and infection. In two further experiments 14-day-old ducks were inoculated with DHBV-positive serum containing 10(4), 10(6), 10(8), or 5 x 10(8) viral genomes (vge) and were treated orally with 1.0 mg/kg of body weight/day of ETV for 14 or 49 days. A relationship between virus dose and infection outcome was seen: non-ETV-treated ducks inoculated with 10(4) vge had transient infection, while ducks inoculated with higher doses developed persistent infection. ETV treatment for 49 days did not prevent initial infection of the liver but restricted the spread of infection more than approximately 1,000-fold, a difference which persisted throughout treatment and for up to 49 days after withdrawal. Ultimately, three of seven ETV-treated ducks resolved their DHBV infection, while the remaining ducks developed viremia and persistent infection after a lag period of at least 63 days. ETV treatment for 14 days also restricted the spread of infection, leading to marked and sustained reductions in the number of DHBV-positive hepatocytes in 7 out of 10 ducks. In conclusion, short-term suppression with ETV provides opportunity for the immune response to successfully control DHBV infection. Since DHBV infection of ducks provides a good model system for HBV infection in humans, it seems likely that ETV may be useful in postexposure therapy for HBV infection aimed at preventing the development of persistent infection.  相似文献   

5.
The differentiated human hepatoma cell line Hep-G2 was transfected with cloned duck hepatitis B virus (DHBV) DNA. Introduction of closed circular DNA into the human liver cells resulted in the production of viral proteins: core antigen was detected in the cytoplasm, and e antigen, a related product, was secreted into the medium. Moreover, viral particles were released into the tissue culture medium which were indistinguishable from authentic DHBV by density, antigenicity, DNA polymerase activity, and morphology. Intravenous injection of tissue culture-derived DHBV particles into Pekin ducks established DHBV infection. In conclusion, transfection of human hepatoma cells with cloned DHBV DNA results in the production of infectious virus, as occurs with cloned human hepatitis B virus DNA. Human liver cells are therefore competent to support production of the avian and mammalian hepadnaviruses, indicating that liver-specific viral gene expression is controlled by evolutionarily conserved mechanisms. This new DHBV transfection system offers the opportunity to rapidly produce mutated DHBV which then can be further investigated in Pekin ducks.  相似文献   

6.
Duck hepatitis B virus (DHBV) obtained from the serum of congenitally infected ducks was used to infect primary duck hepatocyte cultures 1 to 4 days after plating. Virus replication was demonstrated by the appearance, beginning at 2 days after infection, of intracellular covalently closed-circular and single-stranded DHBV DNA replicative intermediates which were not present in the inoculating virus preparation. With increasing time after infection there was further amplification of intracellular relaxed circular, covalently closed-circular, and single-stranded DHBV DNA. Cultures of primary duck hepatocytes are competent for infection with DHBV only during the first 4 days of culture. Synthesis of DHBV core antigen and DHBV surface antigen was detected by immunofluorescence in 10% of the hepatocytes in culture. De novo synthesis and release of infectious virus was also demonstrated. Therefore, all stages of viral replication were carried out by these experimentally infected primary hepatocyte cultures. This system makes it possible to study DHBV replication in vitro.  相似文献   

7.
The duck hepatitis B virus (DHBV), a member of the hepadna-virus group, has become a useful animal model for exploring important aspects in this family of viruses such as viral replication, course of infection, and the response to antiviral therapy. In chronically DHBV infected ducks, repeated analyses of liver tissue are important in defining the degree of viral replication and liver injury. We describe a technique for repeated liver biopsy using a Keyes skin punch biopsy. This technique provided sufficient quantities of liver tissue for serial analyses with minimal hemorrhage in 18 Pekin ducks. This procedure offers a safe and reliable method of obtaining serial liver biopsies.  相似文献   

8.
9.
Previous studies have demonstrated that nucleic acid polymers (NAPs) have both entry and post-entry inhibitory activity against duck hepatitis B virus (DHBV) infection. The inhibitory activity exhibited by NAPs prevented DHBV infection of primary duck hepatocytes in vitro and protected ducks from DHBV infection in vivo and did not result from direct activation of the immune response. In the current study treatment of primary human hepatocytes with NAP REP 2055 did not induce expression of the TNF, IL6, IL10, IFNA4 or IFNB1 genes, confirming the lack of direct immunostimulation by REP 2055. Ducks with persistent DHBV infection were treated with NAP 2055 to determine if the post-entry inhibitory activity exhibited by NAPs could provide a therapeutic effect against established DHBV infection in vivo. In all REP 2055-treated ducks, 28 days of treatment lead to initial rapid reductions in serum DHBsAg and DHBV DNA and increases in anti-DHBs antibodies. After treatment, 6/11 ducks experienced a sustained virologic response: DHBsAg and DHBV DNA remained at low or undetectable levels in the serum and no DHBsAg or DHBV core antigen positive hepatocytes and only trace amounts of DHBV total and covalently closed circular DNA (cccDNA) were detected in the liver at 9 or 16 weeks of follow-up. In the remaining 5/11 REP 2055-treated ducks, all markers of DHBV infection rapidly rebounded after treatment withdrawal: At 9 and 16 weeks of follow-up, levels of DHBsAg and DHBcAg and DHBV total and cccDNA in the liver had rebounded and matched levels observed in the control ducks treated with normal saline which remained persistently infected with DHBV. These data demonstrate that treatment with the NAP REP 2055 can lead to sustained control of persistent DHBV infection. These effects may be related to the unique ability of REP 2055 to block release of DHBsAg from infected hepatocytes.  相似文献   

10.
克隆鸭乙型肝炎病毒DNA双体体内转染的研究   总被引:1,自引:0,他引:1  
用一种含头尾相连DHBVDNA双体的质粒体内转染2日龄芙蓉鸭,大多数鸭(86%)产生了短暂病毒血症。血清DHBs/preSAg和DHBVDNA于转染后第9天出现,第12~14天达峰值,第28天时多数转阴;少数鸭的病毒血症可持续50天以上。转染鸭肝组织中也检测到复制中间型DHBVDNA的存在。用转染鸭病毒血症期的血清作磷钨酸负染电镜观察,找到了完整的DHBV病毒颗粒,并且用此血清腹腔注射1日龄鸭,60%的鸭被感染成功,证明体内转染后有生物活性的DHBV病毒颗粒的产生。该研究方法的建立.对于研究DHBV变异株.DHBV基因结构与功能的关系等,均有一定理论意义及应用价值。  相似文献   

11.
12.
The major mode of natural infection of duck hepatitis B virus (DHBV) in Pekin ducks is vertical transmission, with 95 to 100% of the embryos from DHBV-infected dams eventually becoming infected. Maternally transmitted virus is present in large quantities in the yolk of unincubated eggs and is taken up by the embryo during early development. Synthesis of DHBV DNA in the embryo begins at about 6 days of incubation and coincides with the formation of the liver. DHBV DNA synthesis is incomplete, however, until 8 to 10 days of incubation, as shown by comparing the electrophoretic patterns of DHBV-specific nucleic acid species from embryonic livers at successive stages of development. From 8 days of incubation and continuing throughout embryonic development, subviral particles, which resemble viral replication intermediates isolated from infected livers of post-hatch ducklings, appear in the circulation. These particles contain a polymerase activity that utilizes an RNA template to synthesize viral DNA. Our results suggest that certain host functions, which appear during embryonic development, may be required for DHBV replication and assembly. It is possible that in mammals a similar developmental process occurs. The failure to find human hepatitis B virus in the circulation of most babies, born to hepatitis B virus carrier women, in the first few weeks after birth may reflect such a process.  相似文献   

13.
14.
J Jung  HY Kim  T Kim  BH Shin  GS Park  S Park  YJ Chwae  HJ Shin  K Kim 《PloS one》2012,7(7):e41087
To investigate the contributions of carboxyl-terminal nucleic acid binding domain of HBV core (C) protein for hepatitis B virus (HBV) replication, chimeric HBV C proteins were generated by substituting varying lengths of the carboxyl-terminus of duck hepatitis B virus (DHBV) C protein for the corresponding regions of HBV C protein. All chimeric C proteins formed core particles. A chimeric C protein with 221-262 amino acids of DHBV C protein, in place of 146-185 amino acids of the HBV C protein, supported HBV pregenomic RNA (pgRNA) encapsidation and DNA synthesis: 40% amino acid sequence identity or 45% homology in the nucleic-acid binding domain of HBV C protein was sufficient for pgRNA encapsidation and DNA synthesis, although we predominantly detected spliced DNA. A chimeric C protein with 221-241 and 251-262 amino acids of DHBV C, in place of HBV C 146-166 and 176-185 amino acids, respectively, could rescue full-length DNA synthesis. However, a reciprocal C chimera with 242-250 of DHBV C ((242)RAGSPLPRS(250)) introduced in place of 167-175 of HBV C ((167)RRRSQSPRR(175)) significantly decreased pgRNA encapsidation and DNA synthesis, and full-length DNA was not detected, demonstrating that the arginine-rich (167)RRRSQSPRR(175) domain may be critical for efficient viral replication. Five amino acids differing between viral species (underlined above) were tested for replication rescue; R169 and R175 were found to be important.  相似文献   

15.
16.
许斌  周双宬  黄玉仙  瞿涤 《病毒学报》2006,22(5):369-374
通过建立鸭原代肝细胞-DHBV感染模型研究氧化苦参碱抗DHBV的作用。分别在DHBV感染前、感染同时以及感染后给药,利用打点杂交、Southern印迹核酸杂交和荧光定量PCR方法分别检测培养细胞上清及细胞内病毒核酸,观察氧化苦参碱在病毒感染的各个环节所起的抗病毒作用。实验结果显示:1mg/mL氧化苦参碱处理细胞后,鸭原代肝细胞培养上清及细胞内的DHBV核酸明显低于病毒感染对照组,病毒抑制率达91.6%;在病毒感染同时加药对病毒的抑制率可达98.5%;感染后持续用药能使不同培养天数的鸭肝细胞内的DHBV核酸降低60.5%~96.6%;氧化苦参碱与DHBV共孵育后,可以使病毒感染力下降69.6%。结果说明氧化苦参碱可以在DHBV感染鸭原代肝细胞的多个环节,包括病毒吸附、进入细胞及细胞内复制等方面发挥抗病毒作用。  相似文献   

17.
18.
Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号