首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The ftsZ gene is required for cell division in Escherichia coli and Bacillus subtilis. In these organisms, FtsZ is located in a ring at the leading edge of the septum. This ring is thought to be responsible for invagination of the septum, either causing invagination of the cytoplasmic membrane or activating septum-specific peptidoglycan biosynthesis. In this paper, we report that the cell division gene ftsZ is present in two mycoplasma species, Mycoplasma pulmonis and Acholeplasma laidlawii, which are eubacterial organisms lacking a cell wall. Sequencing of the ftsZ homolog from M. pulmonis revealed that it was highly homologous to other known FtsZ proteins. The M. pulmonis ftsZ gene was overexpressed, and the purified M. pulmonis FtsZ bound GTP. Using antisera raised against this purified protein, we could demonstrate that it was expressed in M. pulmonis. Expression of the M. pulmonis ftsZ gene in E. coli inhibited cell division, leading to filamentation, which could be suppressed by increasing expression of the E. coli ftsZ gene. The implications of these results for the role of ftsZ in cell division are discussed.  相似文献   

3.
4.
The ftsZ (sulB) gene of Escherichia coli codes for a 40,000-dalton protein that carries out a key step in the cell division pathway. The presence of an ftsZ gene protein in other bacterial species was examined by a combination of Southern blot and Western blot analyses. Southern blot analysis of genomic restriction digests revealed that many bacteria, including species from six members of the family Enterobacteriaceae and from Pseudomonas aeruginosa and Agrobacterium tumefaciens, contained sequences which hybridized with an E. coli ftsZ probe. Genomic DNA from more distantly related bacteria, including Bacillus subtilis, Branhamella catarrhalis, Micrococcus luteus, and Staphylococcus aureus, did not hybridize under minimally stringent conditions. Western blot analysis, with anti-E. coli FtsZ antiserum, revealed that all bacterial species examined contained a major immunoreactive band. Several of the Enterobacteriaceae were transformed with a multicopy plasmid encoding the E. coli ftsZ gene. These transformed strains, Shigella sonnei, Salmonella typhimurium, Klebsiella pneumoniae, and Enterobacter aerogenes, were shown to overproduce the FtsZ protein and to produce minicells. Analysis of [35S]methionine-labeled minicells revealed that the plasmid-encoded gene products were the major labeled species. This demonstrated that the E. coli ftsZ gene could function in other bacterial species to induce minicells and that these minicells could be used to analyze plasmid-endoced gene products.  相似文献   

5.
B Beall  M Lowe    J Lutkenhaus 《Journal of bacteriology》1988,170(10):4855-4864
The Bacillus subtilis homolog of the Escherichia coli ftsZ gene was isolated by screening a B. subtilis genomic library with anti-E. coli FtsZ antiserum. DNA sequence analysis of a 4-kilobase region revealed three open reading frames. One of these coded for a protein that was about 50% homologous to the E. coli FtsZ protein. The open reading frame just upstream of ftsZ coded for a protein that was 34% homologous to the E. coli FtsA protein. The open reading frames flanking these two B. subtilis genes showed no relationship to those found in E. coli. Expression of the B. subtilis ftsZ and ftsA genes in E. coli was lethal, since neither of these genes could be cloned on plasmid vectors unless promoter sequences were first removed. Cloning the B. subtilis ftsZ gene under the control of the lac promoter resulted in an IPTGs phenotype that could be suppressed by overproduction of E. coli FtsZ. These genes mapped at 135 degrees on the B. subtilis genetic map near previously identified cell division mutations.  相似文献   

6.
7.
Borrelia burgdorferi ftsZ plays a role in cell division   总被引:1,自引:0,他引:1       下载免费PDF全文
ftsZ is essential for cell division in many microorganisms. In Escherichia coli and Bacillus subtilis, FtsZ plays a role in ring formation at the leading edge of the cell division septum. An ftsZ homologue is present in the Borrelia burgdorferi genome (ftsZ(Bbu)). Its gene product (FtsZ(Bbu)) is strongly homologous to other bacterial FtsZ proteins, but its function has not been established. Because loss-of-function mutants of ftsZ(Bbu) might be lethal, the tetR/tetO system was adapted for regulated control of this gene in B. burgdorferi. Sixty-two nucleotides of an ftsZ(Bbu) antisense DNA sequence under the control of a tetracycline-responsive modified hybrid borrelial promoter were cloned into pKFSS1. This construct was electroporated into a B. burgdorferi host strain carrying a chromosomally located tetR under the control of the B. burgdorferi flaB promoter. After induction by anhydrotetracycline, expression of antisense ftsZ RNA resulted in generation of filamentous B. burgdorferi that were unable to divide and grew more slowly than uninduced cells. To determine whether FtsZ(Bbu) could interfere with the function of E. coli FtsZ, ftsZ(Bbu) was amplified from chromosomal DNA and placed under the control of the tetracycline-regulated hybrid promoter. After introduction of the construct into E. coli and induction with anhydrotetracycline, overexpression of ftsZ(Bbu) generated a filamentous phenotype. This suggested interference of ftsZ(Bbu) with E. coli FtsZ function and confirmed the role of ftsZ(Bbu) in cell division. This is the first report of the generation of a B. burgdorferi conditional lethal mutant equivalent by tetracycline-controlled expression of antisense RNA.  相似文献   

8.
Gene ftsZ responsible for division of bacterial cells was revealed in most prokaryote groups. A 520-bp fragment of the ftsZ gene was amplified on the template of A. laidlawii DNA using degenerate primers. This fragment was sequenced and served as a hybridization probe for cloning of the full-sized copy of the A. laidlawii ftsZ gene. The amplified fragment was cloned in a pGEX3X vector and expressed in E. coli cells. Polyclonal antibodies derived from the chimeric polypeptide containing a fragment of A. laidlawii FtsZ protein interacted only with the A. laidlawii protein with molecular mass of 40 kDa. Comparison of nucleotide sequences of the ftsZ-gene region of A. laidlawii and other bacterial species showed that they were highly homologous in A. laidlawii, E. coli, and Bac. subtilis, while low homology was revealed between the A. laidlawii sequence and those of the members of the genus Mycoplasma. Analysis of the ftsZ-gene nucleotide sequences is suggested as a means to study the evolutionary relatedness of prokaryotes.  相似文献   

9.
W Margolin  R Wang    M Kumar 《Journal of bacteriology》1996,178(5):1320-1327
We have isolated a homolog of the cell division gene ftsZ from the extremely halophilic archaebacterium Halobacterium salinarium. The predicted protein of 39 kDa is divergent relative to eubacterial homologs, with 32% identity to Escherichia coli FtsZ. No other eubacterial cell division gene homologs were found adjacent to H. salinarium ftsZ. Expression of the ftsZ gene region in H. salinarium induced significant morphological changes leading to the loss of rod shape. Phylogenetic analysis demonstrated that the H. salinarium FtsZ protein is more related to tubulins than are the FtsZ proteins of eubacteria, supporting the hypothesis that FtsZ may have evolved into eukaryotic tubulin.  相似文献   

10.
11.
Degenerate primers corresponding to highly conserved regions of previously characterized ftsZ genes were used to PCR amplify a portion of the ftsZ gene from the genomic DNA of Ehrlichia chaffeensis (ftsZ(Ech)), Anaplasma phagocytophilum (ftsZ(Ap)), and Rickettsia rickettsii (ftsZ(Rr)). Genome walking was then used to amplify the 5' and 3' termini of the genes. The DNA sequences of the resulting amplification products yielded open reading frames coding for proteins with molecular masses of 42.0, 45.7, and 48.3 kDa for A. phagocytophilum, E. chaffeensis, and R. rickettsii, respectively. These homologs are 20 to 70 amino acids longer than the FtsZ proteins characterized in bacteria such as Escherichia coli and Bacillus subtilis, but do not possess the large extended carboxyl-termini found in the FtsZ proteins of Bartonella, Rhizobium, and Agrobacterium species. The functional domains important for FtsZ activity are conserved within the ehrlichial and rickettsial FtsZ protein sequences. The R. rickettsii FtsZ sequence is highly homologous to the FtsZ protein previously described for Rickettsia prowazekii (89% identity), and identical to the FtsZ protein of Rickettsia conorii. The percent identity observed between the A. phagocytophilum and E. chaffeensis FtsZ proteins is only 79% and is particularly low in the carboxyl-terminal region (15.8% identity). Primers were designed to PCR amplify a portion of the variable carboxyl-terminal region of the ftsZ gene, and used to differentiate each agent based on the size of the amplicons: A. phagocytophilum, 278 bp; E. chaffeensis, 341 bp; and Rickettsia spp., 425 bp.  相似文献   

12.
A hybrid assay, based on the properties of the lambda repressor, was developed to detect FtsZ dimerization in Escherichia coli in vivo. A gene fusion comprising the N-terminal end of the lambda cI repressor gene and the complete E. coli ftsZ gene was constructed. The fused protein resulted in a functional lambda repressor and was able to complement the thermosensitive mutant ftsZ84. Using the same strategy, a series of 10 novel mutants of FtsZ that are unable to dimerize was selected, and a deletion analysis of the protein was carried out. Characterization of these mutants allowed the identification of three separate FtsZ portions: the N-terminal of about 150 amino acids; the C-terminal of about 60 amino acids, which corresponds to the less conserved portion of the protein; and a central region of about 150 residues. Mutants belonging to this region would define the dimerization domain of FtsZ.  相似文献   

13.
14.
ftsZ is an essential cell division gene in Escherichia coli.   总被引:28,自引:21,他引:7       下载免费PDF全文
The ftsZ gene is thought to be an essential cell division gene in Escherichia coli. We constructed a null allele of ftsZ in a strain carrying additional copies of ftsZ on a plasmid with a temperature-sensitive replication defect. This strain was temperature sensitive for cell division and viability, confirming that ftsZ is an essential cell division gene. Further analysis revealed that after a shift to the nonpermissive temperature, cell division ceased when the level of FtsZ started to decrease, indicating that septation is very sensitive to the level of FtsZ. Subsequent studies showed that nucleoid segregation was normal while FtsZ was decreasing and that ftsZ expression was not autoregulated. The null allele could not be complemented by lambda 16-2, even though this bacteriophage can complement the thermosensitive ftsZ84 mutation and carries 6 kb of DNA upstream of the ftsZ gene.  相似文献   

15.
Interaction between the min locus and ftsZ.   总被引:25,自引:16,他引:9       下载免费PDF全文
In Escherichia coli, distinct but similar minicell phenotypes resulting from mutation at the minB locus and increased expression of ftsZ suggested a possible interaction between these genes. A four- to fivefold increase in FtsZ resulting from increased gene dosage was found to suppress the lethality of minCD expressed from the lac promoter. Since increased MinCD did not affect the level of FtsZ, this suggested that MinCD may antagonize FtsZ to inhibit its cell division activity. This possibility was supported by the finding that alleles of ftsZ isolated as resistant to the cell division inhibitor SulA were also resistant to MinCD. Among the ftsZ(Rsa) alleles, two appeared to be completely resistant to MinCD as demonstrated by the lack of an effect of MinCD on cell length and a minicell phenotype observed in the absence of a significant increase in FtsZ. It was shown that SulA inhibits cell division independently of MinCD.  相似文献   

16.
Overproduction of FtsZ induces minicell formation in E. coli   总被引:68,自引:0,他引:68  
J E Ward  J Lutkenhaus 《Cell》1985,42(3):941-949
The ftsZ gene in E. coli K-12 is an essential cell division gene. We report that a two to sevenfold increase in the level of the FtsZ protein resulted in induction of the minicell phenotype. An increase in the level of FtsZ beyond this range resulted in an inhibition of all cell division. Unlike the classical minicell mutant, the formation of minicells induced by increased levels of FtsZ did not occur at the expense of normal divisions, indicating that increasing FtsZ resulted in additional division events per cell cycle. In addition, increased FtsZ caused cell division to be initiated earlier in the cell cycle. These results are consistent with the level or activity of FtsZ controlling the frequency of cell division in E. coli.  相似文献   

17.
FtsZ是与真核微管蛋白类似的原核骨架蛋白,能在细胞分裂位点聚合组装成环状结构而调控细胞分裂过程。为了研究钝顶螺旋藻(Spirulina platensis)FtsZ蛋白的功能,构建了钝顶螺旋藻FtsZ与绿色荧光蛋白GFP融合表达的质粒,并在大肠杆菌中进行了表达和定位研究,结果发现,表达融合蛋白GFP-FtsZ的大肠杆菌细胞由短杆状变为长丝状,且菌丝体长度与融合蛋白的表达量呈正比。在荧光显微镜下观察到融合蛋白GFP-FtsZ在长丝状体细菌中呈有规律的点状分布,这说明FtsZ蛋白功能高度保守,钝顶螺旋藻FtsZ蛋白能识别大肠杆菌分裂位点并装配成环状结构调控大肠杆菌细胞分裂,FtsZ蛋白的过量表达能抑制大肠杆菌正常的细胞分裂而导致长丝状体细胞的形成。  相似文献   

18.
We isolated five new temperature-sensitive alleles of the essential cell division gene ftsZ in Escherichia coli, using P1-mediated, localized mutagenesis. The five resulting single amino acid changes (Gly109-->Ser109 for ftsZ6460, Ala129-->Thr129 for ftsZ972, Val157-->Met157 for ftsZ2066, Pro203-->Leu203 for ftsZ9124, and Ala239-->Val239 for ftsZ2863) are distributed throughout the FtsZ core region, and all confer a lethal cell division block at the nonpermissive temperature of 42 degrees C. In each case the division block is associated with loss of Z-ring formation such that fewer than 2% of cells show Z rings at 42 degrees C. The ftsZ9124 and ftsZ6460 mutations are of particular interest since both result in abnormal Z-ring formation at 30 degrees C and therefore cause significant defects in FtsZ polymerization, even at the permissive temperature. Neither purified FtsZ9124 nor purified FtsZ6460 exhibited polymerization when it was assayed by light scattering or electron microscopy, even in the presence of calcium or DEAE-dextran. Hence, both mutations also cause defects in FtsZ polymerization in vitro. Interestingly, FtsZ9124 has detectable GTPase activity, although the activity is significantly reduced compared to that of the wild-type FtsZ protein. We demonstrate here that unlike expression of ftsZ84, multicopy expression of the ftsZ6460, ftsZ972, and ftsZ9124 alleles does not complement the respective lethalities at the nonpermissive temperature. In addition, all five new mutant FtsZ proteins are stable at 42 degrees C. Therefore, the novel isolates carrying single ftsZ(Ts) point mutations, which are the only such strains obtained since isolation of the classical ftsZ84 mutation, offer significant opportunities for further genetic characterization of FtsZ and its role in cell division.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号