首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuolar calmodulin (CaM)-stimulated Ca(2+)-ATPase, BCA1p, in cauliflower (Brassica oleracea) has an extended N terminus, which was suggested to contain a CaM-binding domain (S. Malmstr?m, P. Askerlund, M.G. Palmgren [1997] FEBS Lett 400: 324-328). The goal of the present study was to determine the role of the N terminus in regulating BCA1p. Western analysis using three different antisera showed that the N terminus of BCA1p is cleaved off by trypsin and that the N terminus contains the CaM-binding domain. Furthermore, the expressed N terminus binds CaM in a Ca(2+)-dependent manner. A synthetic peptide corresponding to the CaM-binding domain of BCA1p (Ala-19 to Leu-43) strongly inhibited ATP-dependent Ca(2+) pumping by BCA1p in cauliflower low-density membranes, indicating that the CaM-binding region of BCA1p also has an autoinhibitory function. The expressed N terminus of BCA1p and a synthetic peptide (Ala-19 to Met-39) were good substrates for phosphorylation by protein kinase C. Sequencing of the phosphorylated fusion protein and peptide suggested serine-16 and/or serine-28 as likely targets for phosphorylation. Phosphorylation of serine-28 had no effect on CaM binding to the alanine-19 to methionine-39 peptide. Our results demonstrate the regulatory importance of the N terminus of BCA1p as a target for CaM binding, trypsin cleavage, and phosphorylation, as well as its importance as an autoinhibitory domain.  相似文献   

2.
The type IIb class of plant Ca(2+)-ATPases contains a unique N-terminal extension that encompasses a calmodulin (CaM) binding domain and an auto-inhibitory domain. Binding of Ca(2+)-CaM to this region can release auto-inhibition and activates the calcium pump. Using multidimensional NMR spectroscopy, we have determined the solution structure of the complex of a plant CaM isoform with the CaM-binding domain of the well characterized Ca(2+)-ATPase BCA1 from cauliflower. The complex has a rather elongated structure in which the two lobes of CaM do not contact each other. The anchor residues Trp-23 and Ile-40 form a 1-8-18 interaction motif. Binding of Ca(2+)-CaM gives rise to the induction of two helical parts in this unique target peptide. The two helical portions are connected by a highly positively charged bend region, which represents a relatively fixed angle and positions the two lobes of CaM in an orientation that has not been seen before in any complex structure of calmodulin. The behavior of the complex was further characterized by heteronuclear NMR dynamics measurements of the isotope-labeled protein and peptide. These data suggest a unique calcium-driven activation mechanism for BCA1 and other plant Ca(2+)-ATPases that may also explain the action of calcium-CaM on some other target enzymes. Moreover, CaM activation of plant Ca(2+)-ATPases seems to occur in an organelle-specific manner.  相似文献   

3.
Structural studies of the calmodulin-dependent protein kinase I have shown how the calmodulin-binding domain and autoinhibitory domain interact with the active sites of the enzyme. In this work, we have studied the interaction in solution of two synthetic short and long (22- and 37-residue) peptides representing the binding and autoinhibitory domains of CaMKI with Ca2+-CaM using CD, NMR, and EPR spectroscopy. Both peptides adopt alpha-helical structure when bound to Ca2+-CaM, as detected by CD spectroscopy. Cadmium-113 NMR showed that both peptides induced cooperativity in metal ion binding between the two lobes of the protein. To directly observe the effect of the peptides upon CaM in solution, biosynthetically isotope labeled [methyl-13C-Met]CaM was prepared and studied by 1H, 13C NMR. The relaxation effects of two nitroxide spin-labeled derivatives of the short peptide showed the N-terminal portion of the CaM-binding domain interacting with the C-lobe of CaM, while the C-lobe of the peptide binds to the N-lobe of CaM. Our results are consistent with Trp303 and Met316 acting as the anchoring residues for the C- and N-lobes of CaM, respectively. The NMR spectra of the long peptide showed further differences, suggesting that additional interactions may exist between the autoinhibitory domain and CaM.  相似文献   

4.
Identification of the calmodulin binding domain of connexin 43   总被引:2,自引:0,他引:2  
Calmodulin (CaM) has been implicated in mediating the Ca(2+)-dependent regulation of gap junctions. This report identifies a CaM-binding motif comprising residues 136-158 in the intracellular loop of Cx43. A 23-mer peptide encompassing this CaM-binding motif was shown to bind Ca(2+)-CaM with 1:1 stoichiometry by using various biophysical approaches, including surface plasmon resonance, circular dichroism, fluorescence spectroscopy, and NMR. Far UV circular dichroism studies indicated that the Cx43-derived peptide increased its alpha-helical contents on CaM binding. Fluorescence and NMR studies revealed conformational changes of both the peptide and CaM following formation of the CaM-peptide complex. The apparent dissociation constant of the peptide binding to CaM in physiologic K(+) is in the range of 0.7-1 microM. Upon binding of the peptide to CaM, the apparent K(d) of Ca(2+) for CaM decreased from 2.9 +/- 0.1 to 1.6 +/- 0.1 microM, and the Hill coefficient n(H) increased from 2.1 +/- 0.1 to 3.3 +/- 0.5. Transient expression in HeLa cells of two different mutant Cx43-EYFP constructs without the putative Cx43 CaM-binding site eliminated the Ca(2+)-dependent inhibition of Cx43 gap junction permeability, confirming that residues 136-158 in the intracellular loop of Cx43 contain the CaM-binding site that mediates the Ca(2+)-dependent regulation of Cx43 gap junctions. Our results provide the first direct evidence that CaM binds to a specific region of the ubiquitous gap junction protein Cx43 in a Ca(2+)-dependent manner, providing a molecular basis for the well characterized Ca(2+)-dependent inhibition of Cx43-containing gap junctions.  相似文献   

5.
6.
Genes encoding calmodulin-binding proteins in the Arabidopsis genome.   总被引:10,自引:0,他引:10  
Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.  相似文献   

7.
S H Yoo 《Biochemistry》1992,31(26):6134-6140
Chromogranin A (CGA), the most abundant protein in bovine adrenal chromaffin granules, is a high-capacity, low-affinity Ca(2+)-binding protein found in most neuroendocrine cells, and binds calmodulin (CaM) in a Ca(2+)-dependent manner. The binding of chromogranin A to calmodulin was determined by measuring the intrinsic tryptophan fluorescence of chromogranin A in the presence and absence of Ca2+. Binding was specifically Ca(2+)-dependent; neither Mg2+ nor Mn2+ could substitute for Ca2+. Chelation of Ca2+ by EGTA completely eliminated the chromogranin A-calmodulin interaction. CaM binding was demonstrated by a synthetic CGA peptide representing residues 40-65. When the CGA peptide and CaM were mixed in the presence of 15 mM CaCl2, the intrinsic tryptophan fluorescence emission underwent a substantial blue-shift, shifting from 350 to 330 nm. Like the intact CGA, the peptide-CaM binding was specifically Ca(2+)-dependent, and neither Mg2+ nor Mn2+ could induce the binding. Calmodulin bound both to CGA and to the synthetic CGA peptide with a stoichiometry of one to one. The dissociation constants (Kd) determined by fluorometric titration were 13 nM for the peptide-CaM binding and 17 nM for intact CGA-CaM binding. The Kd values are comparable to those (approximately 10(-9) M) of other CaM-binding proteins and peptides, demonstrating a tight binding of CaM by CGA. The CaM-binding CGA residues 40-65 are 100% conserved among all the sequenced CGAs in contrast to 50-60% conservation found in the entire sequence, implying essential roles of this region.  相似文献   

8.
Calmodulin (CaM) is a ubiquitous Ca (2+)-sensor protein that binds and activates the nitric oxide synthase (NOS) enzymes. We have used fluorescence resonance energy transfer (FRET) to examine the conformational transitions of CaM induced by its binding to synthetic nitric oxide synthase (NOS) CaM-binding domain peptides and full length heme-free constitutive NOS (cNOS) enzymes over a range of physiologically relevant free Ca (2+) concentrations. We demonstrate for the first time that the domains of CaM collapse when associated with Ca (2+)-independent inducible NOS CaM-binding domain, similar to the previously solved crystal structures of CaM bound to the Ca (2+)-dependent cNOS peptides. We show that the association of CaM is not detectable with the cNOS peptides at low free Ca (2+) concentrations (<40 nM). In contrast, we demonstrate that CaM associates with the cNOS holo-enzymes in the absence of Ca (2+) and that the Ca (2+)-dependent transition occurs at a lower free Ca (2+) concentration with the cNOS holo-enzymes. Our results suggest that other regions outside of the CaM-binding domain in the cNOS enzymes are involved in the recruitment and binding of CaM. We also demonstrate that CaM binds to the cNOS enzymes in a sequential manner with the Ca (2+)-replete C-lobe binding first followed by the Ca (2+)-replete N-lobe. This novel FRET study helps to clarify some of the observed similarities and differences between the Ca (2+)-dependent/independent interaction between CaM and the NOS isozymes.  相似文献   

9.
Calmodulin (CaM) is a ubiquitous calcium (Ca(2+)) sensor which binds and regulates protein serine/threonine kinases along with many other proteins in a Ca(2+)-dependent manner. For this multi-functionality, conformational plasticity is essential; however, the nature and magnitude of CaM's plasticity still remains largely undetermined. Here, we present the 1.8 A resolution crystal structure of Ca(2+)/CaM, complexed with the 27-residue synthetic peptide corresponding to the CaM-binding domain of the nematode Caenorhabditis elegans Ca(2+)/CaM-dependent kinase kinase (CaMKK). The peptide bound in this crystal structure is a homologue of the previously NMR-derived complex with rat CaMKK, but benefits from improved structural resolution. Careful comparison of the present structure to previous crystal structures of CaM complexed with unrelated peptides derived from myosin light chain kinase and CaM kinase II, allow a quantitative analysis of the differences in the relative orientation of the N and C-terminal domains of CaM, defined as a screw axis rotation angle ranging from 156 degrees to 196 degrees. The principal differences in CaM interaction with various peptides are associated with the N-terminal domain of CaM. Unlike the C-terminal domain, which remains unchanged internally, the N-terminal domain of CaM displays significant differences in the EF-hand helix orientation between this and other CaM structures. Three hydrogen bonds between CaM and the peptide (E87-R336, E87-T339 and K75-T339) along with two salt bridges (E11-R349 and E114-K334) are the most probable determinants for the binding direction of the CaMKK peptide to CaM.  相似文献   

10.
Previously we have identified the lipid mediator sphingosylphosphorylcholine (SPC) as the first potentially endogenous inhibitor of the ubiquitous Ca2+ sensor calmodulin (CaM) (Kovacs, E., and Liliom, K. (2008) Biochem. J. 410, 427–437). Here we give mechanistic insight into CaM inhibition by SPC, based on fluorescence stopped-flow studies with the model CaM-binding domain melittin. We demonstrate that both the peptide and SPC micelles bind to CaM in a rapid and reversible manner with comparable affinities. Furthermore, we present kinetic evidence that both species compete for the same target site on CaM, and thus SPC can be considered as a competitive inhibitor of CaM-target peptide interactions. We also show that SPC disrupts the complex of CaM and the CaM-binding domain of ryanodine receptor type 1, inositol 1,4,5-trisphosphate receptor type 1, and the plasma membrane Ca2+ pump. By interfering with these interactions, thus inhibiting the negative feedback that CaM has on Ca2+ signaling, we hypothesize that SPC could lead to Ca2+ mobilization in vivo. Hence, we suggest that the action of the sphingolipid on CaM might explain the previously recognized phenomenon that SPC liberates Ca2+ from intracellular stores. Moreover, we demonstrate that unlike traditional synthetic CaM inhibitors, SPC disrupts the complex between not only the Ca2+-saturated but also the apo form of the protein and the target peptide, suggesting a completely novel regulation for target proteins that constitutively bind CaM, such as ryanodine receptors.  相似文献   

11.
Regulation of protein dephosphorylation by cytoplasmic Ca(2+) levels and calmodulin (CaM) is well established and considered to be mediated solely by calcineurin. Yet, recent identification of protein phosphatases with EF-hand domains (PPEF/rdgC) point to the existence of another group of Ca(2+)-dependent protein phosphatases. We have recently hypothesised that PPEF/rdgC phosphatases might possess CaM-binding sites of the IQ-type in their N-terminal domains. We now employed yeast two-hybrid system and surface plasmon resonance (SPR) to test this hypothesis. We found that entire human PPEF2 interacts with CaM in the in vivo tests and that its N-terminal domain binds to CaM in a Ca(2+)-dependent manner with nanomolar affinity in vitro. The fragments corresponding to the second exons of PPEF1 and PPEF2, containing the IQ motifs, are sufficient for specific Ca(2+)-dependent interaction with CaM both in vivo and in vitro. These findings demonstrate the existence of mammalian CaM-binding protein Ser/Thr phosphatases distinct from calcineurin and suggest that the activity of PPEF phosphatases may be controlled by Ca(2+) in a dual way: via C-terminal Ca(2+)-binding domain and via interaction of the N-terminal domain with CaM.  相似文献   

12.
The recent finding of an interaction between calmodulin (CaM) and the tobacco mitogen-activated protein kinase phosphatase-1 (NtMKP1) establishes an important connection between Ca(2+) signaling and the MAPK cascade, two of the most important signaling pathways in plant cells. Here we have used different biophysical techniques, including fluorescence and NMR spectroscopy as well as microcalorimetry, to characterize the binding of soybean CaM isoforms, SCaM-1 and -4, to synthetic peptides derived from the CaM binding domain of NtMKP1. We find that the actual CaM binding region is shorter than what had previously been suggested. Moreover, the peptide binds to the SCaM C-terminal domain even in the absence of free Ca(2+) with the single Trp residue of the NtMKP1 peptides buried in a solvent-inaccessible hydrophobic region. In the presence of Ca(2+), the peptides bind first to the C-terminal lobe of the SCaMs with a nanomolar affinity, and at higher peptide concentrations, a second peptide binds to the N-terminal domain with lower affinity. Thermodynamic analysis demonstrates that the formation of the peptide-bound complex with the Ca(2+)-loaded SCaMs is driven by favorable binding enthalpy due to a combination of hydrophobic and electrostatic interactions. Experiments with CaM proteolytic fragments showed that the two domains bind the peptide in an independent manner. To our knowledge, this is the first report providing direct evidence for sequential binding of two identical peptides of a target protein to CaM. Discussion of the potential biological role of this interaction motif is also provided.  相似文献   

13.
We have used a highly environment-sensitive fluorescent probe 6-bromoacetyl-2-dimethylaminonaphthalene (badan) to study the interaction between calmodulin (CaM) and a CaM-binding peptide of the ryanodine receptor (CaMBP) and its sub-fragments F1 and F4. Badan was attached to the Thr34Cys mutant of CaM (CaM-badan). Ca(2+) increase in a physiological range of Ca(2+) (0.1-2 microM) produced about 40 times increase in the badan fluorescence. Upon binding to CaMBP, the badan fluorescence of apo-CaM showed a small increase at a slow rate; whereas that of Ca-CaM showed a large decrease at a very fast rate. Upon binding of CaM to the badan-labeled CaMBP, the badan fluorescence showed a small and slow increase at low Ca(2+), and a large and fast increase at high Ca(2+). Thus, the badan probe attached to CaM Cys(34) can be used to monitor conformational changes occurring not only in CaM, but also those in the CaM-CaMBP interface. Based on our results we propose that both the interaction interface and the global conformation of the CaM-CaMBP complex are altered by calcium.  相似文献   

14.
The calmodulin (CaM)-binding domain of isoform 4b of the plasma membrane Ca(2+) -ATPase (PMCA) pump is represented by peptide C28. CaM binds to either PMCA or C28 by a mechanism in which the primary anchor residue Trp-1093 binds to the C-terminal lobe of the extended CaM molecule, followed by collapse of CaM with the N-terminal lobe binding to the secondary anchor Phe-1110 (Juranic, N., Atanasova, E., Filoteo, A. G., Macura, S., Prendergast, F. G., Penniston, J. T., and Strehler, E. E. (2010) J. Biol. Chem. 285, 4015-4024). This is a relatively rapid reaction, with an apparent half-time of ~1 s. The dissociation of CaM from PMCA4b or C28 is much slower, with an overall half-time of ~10 min. Using targeted molecular dynamics, we now show that dissociation of Ca(2+)-CaM from C28 may occur by a pathway in which Trp-1093, although deeply embedded in a pocket in the C-terminal lobe of CaM, leaves first. The dissociation begins by relatively rapid release of Trp-1093, followed by very slow release of Phe-1110, removal of C28, and return of CaM to its conformation in the free state. Fluorescence measurements and molecular dynamics calculations concur in showing that this alternative path of release of the PMCA4b CaM-binding domain is quite different from that of binding. The intermediate of dissociation with exposed Trp-1093 has a long lifetime (minutes) and may keep the PMCA primed for activation.  相似文献   

15.
Calmodulin-dependent protein kinase I (CaM kinase I) is a member of the expanding class of protein kinases that are regulated by calmodulin (CaM). Its putative CaM-binding region is believed to occur within a 22-residue sequence (amino acids 299-320). This sequence was chemically synthesized and utilized for CaM interaction studies. Gel band shift assays and densitometry experiments with intact CaM kinase I and the CaM-binding domain peptide (CaMKIp) reveal that they bind in an analogous manner, giving rise to 1:1 complexes. Fluorescence analysis using dansyl-CaM showed that conformational changes in CaM on binding CaM kinase I or CaMKIp were nearly identical, suggesting that the peptide mimicked the CaM-binding ability of the intact protein. In the presence of CaM, the peptide displays an enhancement of its unique Trp fluorescence as well as a marked blue shift of the emission maximum, reflecting a transfer to a more rigid, less polar environment. Quenching studies, using acrylamide, confirmed that the Trp in the peptide on binding CaM is no longer freely exposed to solvent as is the case for the free peptide. Studies with a series of Met mutants of CaM showed that the Trp-containing N-terminal end of CaMKIp was bound to the C-terminal lobe of CaM. Near-UV CD spectra also indicate that the Trp of the peptide and Phe residues of the protein are involved in the binding. These results show that the CaM-binding domain of CaM kinase I binds to CaM in a manner analogous to that of myosin light chain kinase.  相似文献   

16.
Calmodulin (CaM) and Ca(2+)/CaM-dependent protein kinase II (CaM kinase) are tightly associated with cardiac sarcoplasmic reticulum (SR) and are implicated in the regulation of transmembrane Ca(2+) cycling. In order to assess the importance of membrane-associated CaM in modulating the Ca(2+) pump (Ca(2+)-ATPase) function of SR, the present study investigated the effects of a synthetic, high affinity CaM-binding peptide (CaM BP; amino acid sequence, LKWKKLLKLLKKLLKLG) on the ATP-energized Ca(2+) uptake, Ca(2+)-stimulated ATP hydrolysis, and CaM kinase-mediated protein phosphorylation in rabbit cardiac SR vesicles. The results revealed a strong concentration-dependent inhibitory action of CaM BP on Ca(2+) uptake and Ca(2+)-ATPase activities of SR (50% inhibition at approximately 2-3 microM CaM BP). The inhibition, which followed the association of CaM BP with its SR target(s), was of rapid onset (manifested within 30 s) and was accompanied by a decrease in V(max) of Ca(2+) uptake, unaltered K(0.5) for Ca(2+) activation of Ca(2+) transport, and a 10-fold decrease in the apparent affinity of the Ca(2+)-ATPase for its substrate, ATP. Thus, the mechanism of inhibition involved alterations at the catalytic site but not the Ca(2+)-binding sites of the Ca(2+)-ATPase. Endogenous CaM kinase-mediated phosphorylation of Ca(2+)-ATPase, phospholamban, and ryanodine receptor-Ca(2+) release channel was also strongly inhibited by CaM BP. The inhibitory action of CaM BP on SR Ca(2+) pump function and protein phosphorylation was fully reversed by exogenous CaM (1-3 microM). A peptide inhibitor of CaM kinase markedly attenuated the ability of CaM to reverse CaM BP-mediated inhibition of Ca(2+) transport. These findings suggest a critical role for membrane-bound CaM in controlling the velocity of Ca(2+) pumping in native cardiac SR. Consistent with its ability to inhibit SR Ca(2+) pump function, CaM BP (1-2.5 microM) caused marked depression of contractility and diastolic dysfunction in isolated perfused, spontaneously beating rabbit heart preparations. Full or partial recovery of contractile function occurred gradually following withdrawal of CaM BP from the perfusate, presumably due to slow dissociation of CaM BP from its target sites promoted by endogenous cytosolic CaM.  相似文献   

17.
Calcineurin (CaN) binds Ca(2+)-saturated calmodulin (CaM) with relatively high affinity; however, an accurate steady-state K(d) value has not been determined. In this report, we describe, using steady-state and stopped-flow fluorescence techniques, the rates of association and dissociation of Ca(2+)-saturated CaM from CaN heterodimer (CaNA/CaNB) and CaNA only. The rate of Ca(2+)/CaM association was determined to be 4.6 x 10(7) M(-1)s(-1). The rate of Ca(2+)/CaM dissociation from CaN was slower than previously reported and was approximately 0.0012 s(-1). In preparations of CaNA alone (no regulatory CaNB subunit), the dissociation rate was slowed further to 0.00026 s(-1). From these data we calculate a K(d) for binding of Ca(2+)-saturated CaM to CaN of 28 pM. This K(d) is significantly lower than previously reported estimates of approximately 1 nM and indicates that CaN is one of the highest affinity CaM-binding proteins identified to date.  相似文献   

18.
19.
An increasing number of ion channels have been found to be regulated by the direct binding of calmodulin (CaM), but its structural features are mostly unknown. Previously, we identified the Ca(2+)-dependent and -independent interactions of CaM to the voltage-gated sodium channel via an IQ-motif sequence. In this study we used the trypsin-digested CaM fragments (TR(1)C and TR(2)C) to analyze the binding of Ca(2+)-CaM or Ca(2+)-free (apo) CaM with a sodium channel-derived IQ-motif peptide (NaIQ). Circular dichroic spectra showed that NaIQ peptide enhanced alpha-helicity of the CaM C-terminal lobe, but not that of the CaM N-terminal lobe in the absence of Ca(2+), whereas NaIQ enhanced the alpha-helicity of both the N- and C-terminal lobes in the presence of Ca(2+). Furthermore, the competitive binding experiment demonstrated that Ca(2+)-dependent CaM binding of target peptides (MLCKp or melittin) with CaM was markedly suppressed by NaIQ. The results suggest that IQ-motif sequences contribute to prevent target proteins from activation at low Ca(2+) concentrations and may explain a regulatory mechanism why highly Ca(2+)-sensitive target proteins are not activated in the cytoplasm.  相似文献   

20.
Calcium/calmodulin (CaM)-dependent protein kinase II (CaM-kinase II) contained within the postsynaptic density (PSD) was shown to become partially Ca2+-independent following initial activation by Ca2+/CaM. Generation of this Ca2+-independent species was dependent upon autophosphorylation of both subunits of the enzyme in the presence of Mg2+/ATP/Ca2+/CaM and attained a maximal value of 74 +/- 5% of the total activity within 1-2 min. Subsequent to the generation of this partially Ca2+-independent form of PSD CaM-kinase II, addition of EGTA to the autophosphorylation reaction resulted in further stimulation of 32PO4 incorporation into both kinase subunits and a loss of stimulation of the kinase by Ca2+/CaM. Examination of the sites of Ca2+-dependent autophosphorylation by phosphoamino acid analysis and peptide mapping of both kinase subunits suggested that phosphorylation of Thr286/287 of the alpha- and beta-subunits, respectively, may be responsible for the transition of PSD CaM-kinase II to the Ca2+-independent species. A synthetic peptide 281-309 corresponding to a portion of the regulatory domain (residues 281-314) of the soluble kinase inhibited syntide-2 phosphorylation by the Ca2+-independent form of PSD CaM-kinase II (IC50 = 3.6 +/- 0.8 microM). Binding of Ca2+/CaM to peptide 281-309 abolished its inhibitory property. Phosphorylation of Thr286 in peptide 281-309 also decreased its inhibitory potency. These data suggest that CaM-kinase II in the PSD possesses regulatory properties and mechanisms of activation similar to the cytosolic form of CaM-kinase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号