首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
1. Free and membrane-bound polyribosomes were isolated and the associated mRNA species characterized by cell-free protein synthesis, RNA-complexity analysis and polyribosome run-off in vitro. 2. Of the recovered polyribosomal RNA 85% was associated with membrane-bound polyribosomes and contained 87--93% of the total milk-protein mRNA species as assessed by cell-free protein synthesis or RNA-complexity analysis. 3. RNA-complexity analysis showed that the abundant (milk-protein mRNA assumed) species constituted 55% of the post-nuclear poly(A)-containing RNA population, the remainder consisting of a moderately abundant population (18%) and a low abundance population (27%). Calculations suggest that each population contained up to 2, 48 and 5000 different species respectively. 4. RNA-complexity analysis of the free polyribosomal poly(A)-containing RNA demonstrated that all the species in the post-nuclear fraction were present, though in different proportions, the abundant, moderately abundant and low-abundance groups representing 38, 30 and 32% of this population. 5. RNA-complexity analysis of the membrane-bound polyribosomal poly(A)-containing RNA revealed a more limited population, 72% consisting of the abundant (milk-protein mRNA) species, and 28% a population of up to 900 RNA species. 6. Polyribosome run-off confirmed that milk-protein mRNA was associated with the membrane-bound and free polyribosomes, but represented only a small fraction of the total protein synthesized by the latter. 7. Comparative analysis of milk proteins synthesized in mRNA-directed cell-free systems, or by run-off of free and of membrane-bound polyribosomes, is consistent with the interpretation that in vivo the initiation of protein synthesis occurs on free polyribosomes, followed by the attachment of a limited population to the endoplasmic reticulum. After attachment, but before completion of peptide synthesis, the detachable N-terminal peptide sequence of one of these(pre-alpha-lactalbumin) is removed. 8. The results are discussed in terms of the mechanisms involved in the intracellular segregation of mRNA species in the lactating guinea-pig mammary gland.  相似文献   

3.
Poly(A)-containing RNAs were isolated from morphologically different cells of the fungus Schizophyllum commune. Using mRNA markers the number-average length of poly(A)-containing RNA in total RNA and in purified poly(A)-containing RNA was estimated as 1100 nucleotides. Number-average length of poly(A)-tracts was 33 nucleotides. 2.5% of total RNA is poly(A)-containing RNA and probably up to 7.5% are non-polyadenylated polydisperse RNA sequences. Saturation hybridization of poly(A)-containing RNA to gap-translated [3H]DNA resulted in 16% of the reactive single-copy DNA to become S1 nuclease resistant. It was found that purified poly(A)-containing RNA represented the entire RNA complexity, i.e. 10 000 different RNA sequences in S. commune. RNA sequences isolated from morphologically different mycelia and from fruiting and non-fruiting mycelia were identical for at least 90%.  相似文献   

4.
In the lactating guinea pig mammary gland, the most abundant mRNA species encoding the major milk proteins, alpha-lactalbumin and caseins A, B, and C, have been extensively studied. Here we describe the isolation and characterization of cloned cDNA sequences representative of moderately abundant and scarce mammary gland mRNA species present at estimated concentrations of 1,400 (pgpO5), 540 (pgpKE6), 36 (pgpK1), and 2 (pgpJF4) copies per sequence per cell. RNA blotting showed these to represent mRNA species of 1,150, 1,900, 1,250, and 3,300 nucleotides in size, respectively. Hybrid selection cell-free synthesis showed that the mRNAs encoded proteins of Mr 33,000 (pgpO5), 58,000 (pgpKE6), and 36,000 (pgpK1). Studies on the tissue distribution of mammary gland mRNAs showed that the mRNA species of lower abundance, but not milk protein mRNAs, were expressed in other tissues but at concentrations differing from those in the mammary gland. None were expressed in all tissues, and so were not typical "housekeeping" proteins. We have used these cloned cDNA species to reinvestigate the apparent differential accumulation of moderately abundant poly(A)-containing mRNA species in polyadenylated and nonpolyadenylated cytoplasmic RNA populations of the mammary gland. Unlike previous observations, based on RNA excess hybridization using fractionated cDNA probes, the use of sequence-specific cloned cDNA probes showed that little intact mRNA was present in the nonpolyadenylated fraction. Thus previous observations were a reflection of the preferential accumulation of fragments of moderately abundant mRNA species, possibly a result of enhanced turnover. The significance of our results in terms of future investigations into factors which determine mRNA accumulation and tissue-specific expression is discussed.  相似文献   

5.
A non-polyadenylated oligo(U)-containing RNA (poly(A)- . oligo(U)+ RNA) fraction was isolated from wheat embryo cytoplasm and its properties were compared with those of polyadenylated RNA (poly(A)+ RNA) from the same source. Both RNA preparations were highly heterogeneous and effectively stimulated [14C]leucine incorporation in a wheat germ cell-free translation system. Electrophoretic patterns of the translation products appearing in the non-polyadenylated RNA- and polyadenylated RNA-supplemented translation assays, respectively, differed from each other. The non-polyadenylated RNA-specific translation products included, in particular, a series of high molecular weight polypeptides. It is concluded that a specific class of non-polyadenylated oligo(U)-containing mRNA species (other than histone mRNAs) occurs in the wheat embryo cells.  相似文献   

6.
The mRNA species which exist in the HeLa cell polyribisomes in a form devoid of A sequences longer than 8 nucleotides constitute the poly(A)-free class of mRNA. The rapidly labelled component of this mRNA class shares no measurable sequence homology with poly(A)-containing RNA. If poly(A)-free mRNA larger than 12 S labelled for 2 h in vivo is hybridized with total cellular DNA, it hybridizes primarily with single-copy DNA. When a large excess of steady poly(A)-containing RNA is added before hybridization of labelled poly(A)-free RNA, no inhibition of hybridization occurs. This indicates the existence of a class of poly(A)-free mRNA with no poly(A)-containing counterpart. Some mRNA species can exist solely as poly(A)-containing mRNAs. These mRNAs in HeLa cells are found almost exclusively in the mRNA species present only a few times per cell (scarce sequences). Some mRNA species can exist in two forms, poly(A)containing and lacking, as evidenced by the translation data in vitro of Kaufmann et al. [Proc. Natl Acad. Sci. U.S.A. 74, 4801--4805 (1977)]. In addition, if cDNA to total poly(A)-containing mRNA is fractionated into abundant and scarce classes, 47% of the scarce class cDNA can be readily hybridized with poly(A)-free mRNA. 10% of the abundant cDNA to poly(A)-containing mRNA will hybridize with poly(A)-free sequences very rapidly while the other 90% hybridize 160 times more slowly, indicating two very different frequency distributions. The cytoplasmic metabolism of these three distinct mRNA classes is discussed.  相似文献   

7.
Poly(adenylic acid)-containing and -deficient messenger RNA of mouse liver   总被引:1,自引:0,他引:1  
RNA was isolated and fractionated into poly(A)-containing and -deficient classes by oligo(dT) chromatography. Approximately 99% of the poly(A) material bound to the oligo(dT); that which did not bind contained substantially shorter poly(A) chains. All RNA fractions retained an ability to initiate cell-free translation, with the poly(A)-deficient fraction containing half the total translational activity, i.e., mRNA. Two-dimensional polyacrylamide gel analysis of the cell-free translation products revealed three classes of mRNA: 1, mRNA preferentially containing poly(A), including the abundant liver mRNA species; 2, poly(A)-deficient mRNA, including many mid- and low-abundant mRNAs exhibiting less than 10% contamination in the poly(A)-containing fraction fraction; and 3, bimorphic species of mRNA proportioned between both the poly(A)-containing and -deficient fractions. Poly(A)-containing and bimorphic mRNA classes were further characterized by cDNA hybridizations. The capacity of various RNA fractions to prime cDNA synthesis was determined. Compared to total RNA, the poly(A)-containing RNA retained 70% of the priming capacity, while 20% was found in the poly(A)-deficient fraction. Poly(A)-containing, poly(A)-deficient, and total RNA fractions were hybridized to cDNAs synthesized from (+)poly(A)RNA. Poly(A)-containing RNA hybridized with an average R0t 1/2 approximately 20 times faster than total RNA. Poly(A)-deficient RNA hybridized with an average R0t 1/2 approximately 3-4 times slower than total RNA. These R0t 1/2 shifts indicated that in excess of three-quarters of the total hybridizable RNA was recovered in the poly(A)-containing fraction and that less than one-quarter was recovered in the poly(A)-deficient RNA fraction. Abundancy classes were less distinct in heterologous hybridizations. In all cases the extent of hybridization was similar, indicating that while the amount of various mRNA species varied among the RNA fractions, most hybridizing species of RNA were present in each RNA fraction. cDNA to the abundant class of mRNAs was purified and hybridized to both (+)- and (-)poly(A)RNA. Messenger RNA corresponding to the more abundant species was enriched in the poly(A)-containing fraction at least 2-fold over the less abundant species of mRNA, with less than 10% of the abundant mRNAs appearing inthe poly(A)-deficient fraction.  相似文献   

8.
Structures at the 5′ terminus of poly (A)-containing cytoplasmic RNA and heterogeneous nuclear RNA containing and lacking poly(A) have been examined in RNA extracted from both normal and heat-shocked Drosophila cells. 32P-labeled RNA was digested with ribonucleases T2, T1 and A and the products fractionated by a fingerprinting procedure which separates both unblocked 5′ phosphorylated termini and the blocked, methylated, “capped” termini, known to be present in the messenger RNA of most eukaryotes.Approximately 80% of the 5′-terminal structures recovered from digests of poly(A)-containing Drosophila mRNA are cap structures of the general form m7G5′ppp5′X(m)pY(m)pZp. With respect to the extent of ribose methylation and the base distribution, the 5′-terminal sequences of Drosophila capped mRNA appear to be intermediate between those of unicellular eukaryotes and those of mammals. Drosophila is the first organism known in which type 0 (no ribose methylations), type 1 (one ribose methylation), and type 2 (two ribose methylations) caps are all present. In contrast to mammalian cells, the caps of Drosophila never contain the doubly methylated nucleoside N6,2′-O-dimethyladenosine. Both purines and pyrimidines can be found as the penultimate nucleoside of Drosophila caps and there is a wide variety of X-Y base combinations. The relative frequencies of these different base combinations, and the extent of ribose methylation, vary with the duration of labeling. The large majority of poly(A)-containing cytoplasmic RNA molecules from heat-shocked Drosophila cells are also capped, but these caps are unusual in having almost exclusively purines as the penultimate X base.Greater than 75% of the 5′ termini of heterogeneous nuclear RNA (hnRNA) containing poly(A) and greater than 50% of the termini of hnRNA lacking poly (A) are also capped. Triphosphorylated nucleotides, common as the 5′ nucleotides of mammalian hnRNA, are rare in the poly(A)-containing hnRNA of Drosophila. The frequency of the various type 0 and type 1 cap sequences of cytoplasmic and nuclear poly (A)-containing RNA are almost identical. The caps of hnRNA lacking poly(A) are also quite similar to those of poly-adenylated hnRNA, but are somewhat lower in their content of penultimate pyrimidine nucleosides, suggesting that these two populations of molecules are not identical.  相似文献   

9.
10.
Polysomal and nuclear poly(A)-containing RNA of normal rat liver and Novikoff hepatoma cells have been compared by cDNA.RNA hybridization kinetics. Homologous hybridization reactions revealed at total kinetic complexity of about 1.6 X 10(10) and 1.38 X 10(10) daltons for liver and Novikoff mRNA respectively. The high abundance component present in liver cannot be detected in Novikoff. It was found from heterologous reactions that about 30% by weight of mRNA sequences are specific to liver. Determination of the nuclear poly(A)-containing RNA complexities revealed that about 5.5% and 4% of the haploid genome is expressed in the liver and Novikoff respectively. In a heterologous reaction, up to 30% of the liver cDNA failed to form hybrids with Novikoff nuclear RNA. Cross hybridizations have further revealed abundance shifts in both nuclear and polysomal RNA populations. Some sequences abundant in liver are less abundant in Novikoff and some rare liver sequences are relatively abundant in Novikoff.  相似文献   

11.
Three fractions of poly(A)-containing RNA were separated from total rat liver RNA using poly(U)-Sepharose 4B affinity chromatography. The poly(A)-containing RNA fractions were released by thermal elution. Fraction 1, eluted under the mildest conditions, and had poly(A) tracts of approx. 200 AMP units in length which appeared to be associated with poly(U) sequences of 20-50 UMP in length. Fraction 1 appeared to be present mainly in the nucleus and, its size distribution was similar to that of fractions 2 and 3. Fractions 2 and 3 eluted at higher temperatures and were associated mainly with polysomal and microsomal fractions. Poly(U) sequences were absent in fractions 2 and 3 while their poly(A) sequences had a size distribution characteristic of those reported in the mRNA of other organisms.  相似文献   

12.
RNA was extracted from polysomes of sea urchin mesenchyme blastulas and fractionated by affinity chromatography on oligo(dT)-cellulose. The poly(A)+ and poly(A)? fractions were translated in cell-free systems derived from wheat germ and rabbit reticulocytes. The translation products were analyzed by two-dimensional electrophoresis on polyacrylamide gels and found to be qualitatively similar for poly(A)+ and poly(A)? mRNA. Most of the products of cell-free translation have been identified among the in vivo translation products, indicating the fidelity of the translation systems. At least 85% of the poly(A)? mRNA lacks detectable (8 nucleotides or longer) tracts of poly(A). Less than 11% of the poly(A)? mRNA entering polysomes in the reticulocyte lysate contains detectable homopolymers of adenosine. We conclude that the poly(A)+ and poly(A)? mRNA code for the same set of abundant proteins, having isoelectric points between 5 and 7.2 and molecular weights between 15,000 and 100,000. It is possible that some proteins, such as histones, not detectable in our analysis are coded for exclusively by mRNA having or lacking poly(A) tracts.  相似文献   

13.
14.
Maternal RNA of sea urchin eggs and embryos was analyzed for short poly(A) sequences by digesting hybrids formed between [3H]poly(U) and poly(A) with RNase at 4°C. When the undigested [3H]poly(U) is precipitated with CTAB, all (A)n tracts longer than 6 nucleotides are detected. This assay revealed a poly(A) content severalfold higher than is obtained with a similar assay using RNase at higher temperatures. On polyacrylamide gel electrophoresis, most of the previously undetected (A)n tracts ran as a peak of oligo(A) of less than 20 nucleotides which accumulated at the dye front. The oligo(A) sequences were resolved into a single peak of (A)10 when sized on Sephadex G100. These (A)10 sequences were associated with large mRNA-sized molecules of about 3000 nucloetides average length which comprised 0.5 to 2% of the total maternal RNA. However, the (A)10 sequences were not in mRNA molecules containing 3′-terminal poly(A) of 50–120 nucleotides nor did they remain in RNA that entered polysomes upon fertilization. However, hybridization studies showed that all sequences represented in the maternal poly(A)-containing RNA appeared to be present in the RNA molecules containing only (A)10 sequences. The results suggest that the (A)10-containing RNA might be incompletely processed mRNA precursor-like molecules.  相似文献   

15.
Poly(A)-containing RNA was isolated by cellulose column chromatography from total RNA extracted from Chlorella fusca var. vacuolata 211/8p. RNA retained by the column was identified as poly(A)-containing RNA because it contained ribonuclease-resistant tracts, 25 to 55 nucleotides in length, from which not less than 80% of base was found to be adenine after acid hydrolysis. The base composition of poly(A)-containing RNA differed from that of RNA (largely ribosomal) which did not adsorb to cellulose, having a higher adenine content and a lower guanine content. Poly(A)-containing RNA was polydisperse including molecules with mobilities from 10S to 40S with a mean of about 20S. In an in vitro system derived from wheat-germ, protein synthesis was stimulated by adding poly(A)-containing RNA from Chlorella. Optimum conditions were established in this system with respect to the amount of poly(A)-containing RNA added and the concentration of KCl and Mg-2+. It is proposed that, in Chlorella, poly(A)-containing RNA includes cytoplasmic mRNA as has been shown for some other eucaryotic organisms.  相似文献   

16.
17.
DNA complementary to polysomal poly(A)-containing mRNA (cDNA) of male rat liver was used to study the diversity of messenger sequences in the nucleus and in polysomes. 1. Hybridization of cDNA against an excess of its own polysomal mRNA template revealed that about 10,000 different mRNA species are expressed in the liver tissue. They are distributed in a wide frequency range derived from approximately 0.5% of the total genome. 2. Hybridization of the cDNA against total nuclear RNA shows that messenger sequences comprise less than 1% of the mass of total nuclear RNA. Messenger sequences have a different frequency distribution in nucleus and cytoplasm. 3. In hybridizations using cDNA, which had been fractionated into sequences representing abundant and scarce polysomal mRNA molecules, it was found that although abundant cytoplasmic messenger sequences are also abundant in the nucleus, they exist in a significantly lower frequency range in the nuclear compartment.  相似文献   

18.
19.
20.
The stabilities and translation of Ehrlich ascites tumor cell poly(A)-containing mRNA and mengovirus RNA in fractionated cell-free protein synthesizing systems from uninfected and mengovirus-infected Ehrlich ascites tumor cells were studied. During incubation of the systems about 20% of the input RNA is reduced in size and associated with ribosomes engaged in polypeptide synthesis; the remainder is rapidly degraded by RNases. At the end of active translation, both mRNA and nascent proteins are bound to polysomes which are of the same size as those formed during active protein synthesis. The kinetics of protein synthesis closely follow those of RNA hydrolysis. The stabilities of mengovirus RNA and poly(A)-containing mRNA from Ehrlich ascites tumor cells are the same in both systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号