首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Oligo(U) tracts were identified and measured in RNA from sea urchin eggs and embryos using a quantitative assay based on the amount of [3H]poly(A) protected from RNase T2 in duplexes with the oligo(U). The oligo(U) amounted to 0.0035% of egg RNA (0.063 X 10(-12) g/egg) and decreased to 0.0015% (0.027 X 10(-12) g/embryo) by 2 hr after fertilization. The oligo(U) tracts had a maximum size of 15-30 nucleotides and were associated with two size classes of RNA. In eggs about half were in 100 to 200 nucleotide RNA and half in mRNA-sized molecules. After fertilization, the oligo(U) in the population of large-mRNA-sized molecules was greatly reduced.  相似文献   

2.
Ribonucleoprotein particles containing heterogeneous nuclear RNA (Pederson, 1974) were isolated from HeLa cells and digested with ribonucleases A and T1 at high ionic strength. The nuclease-resistant material, comprising 9.4% of the initial acid-insoluble [3H]adenosine radioactivity, was further fractionated by poly(U)-Sepharose chromatography. The bound fraction eluted from the column with 50% formamide and banded in cesium sulfate gradients (without aldehyde fixation) at a buoyant density characteristic of ribonucleoprotein (1.45 g/cm3). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this material revealed two Coomassie blue-stained bands. The major polypeptide had a molecular weight of 74,000 a less prominent band had a molecular weight of 86,000. The RNA components contained 74.4 mol % AMP and 17.7 mol % UMP. Polyacrylamide gel electrophoresis of the RNA, labeled with [3H]adenosine, demonstrated the presence of molecules 150 to 200 nucleotides in length (poly(A)), as well as molecules 20 to 30 nucleotides long (oligo(A)). Both poly(A) and oligo(A) sequences have previously been identified in HeLa heterogeneous nuclear RNA. These data demonstrate that both the poly (A) and oligo(A) sequences in HeLa heterogeneous nuclear RNA exist in vivo tightly complexed with specific proteins.  相似文献   

3.
4.
Most (54–79%) of the heterogeneous nuclear RNA (hnRNA) which contains oligo(U) sequences was specifically retained on columns of poly(A) Sepharose and separated from hnRNA which lacked oligo(U) sequences. The isolation of oligo(U)-containing hnRNA was maximized by treating the hnRNA with HCHO prior to chromatography. This permitted an initial characterization of the oligo(U)-containing hnRNA. Experiments suggest that HCHO denatured the hnRNA and rendered the oligo(U) sequences accessible to poly(A) Sepharose. In denatured hnRNA, the percentage of molecules which contained an oligo(U) sequence increased with the size of the hnRNA; 32–57% of the large hnRNA [8–13 kilobases (kb) long] contained an oligo(U) sequence while only 11–14% of the 2-kb-long hnRNA contained an oligo(U) sequence. The number of oligo(U) sequences per molecule was also measured in denatured hnRNA of varying length. While the largest hnRNA class analyzed (13 kb) was found to contain the highest percentage of oligo(U)-containing molecules (57%), the 8- and 2-kb-long hnRNA fractions contained a greater total number of oligo(U)-containing molecules. The percentage of hnRNA molecules which contained an oligo(U) sequence, the number of oligo(U) sequences per molecule, and the size of the oligo(U) sequence were similar in both control hnRNA and the fraction of hnRNA (~30%) which is resistant to inhibition by 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole.  相似文献   

5.
The total poly(A)-containing mRNA from mouse liver or Ehrlich ascites carcinoma cells was annealed with denatured ds RNA prepared from heavy nuclear 3H-labeled pre-mRNA of the same tissue. The hybrids formed were detected by binding of complexes to poly(U)-Sepharose columns through the poly(A) of mRNA. With this technique, about 30% of labeled ds RNA was bound to poly(U)-Sepharose after annealing it with an mRNA excess. The proportion of hybrid material detected by RNase treatment was two to three times lower than that obtained by poly(U)-Sepharose binding. The length of the RNase-stable acid precipitable hybrid material consisted of heterogeneous sequences of 10–100 nucleotides long when cytoplasmic, and 10–60 nucleotides long when polysomal mRNA was used in the hybridization reaction. The results obtained show that at least some of the mRNA molecules contain sequences complementary to one of the branches of the pre-mRNA hairpins. These results are compatible with the idea that the hairpin-like sequences in pre-mRNA are localized between mRNA and the non-informative part of the precursor molecule.  相似文献   

6.
CHARACTERIZATION OF POLY(A) SEQUENCES IN BRAIN RNA   总被引:5,自引:5,他引:0  
—Nuclear and polysomal brain RNA from the rabbit bind to Millipore filters and oligo(dT)-cellulose suggesting the presence of poly(A) sequences. The residual polynucleotide produced after RNase digestion of 32P pulse-labelled brain RNA is 95% adenylic acid and 200-250 nucleotides in length. After longer isotope pulses the polysomal poly(A) sequence appears heterodisperse in size and shorter than the nuclear poly (A). Poly(A) sequences of brain RNA are located at the 3′-OH termini as determined by the periodate-[3H]NaBH4 labelling technique. Cordycepin interferes with the processing of brain mRNA as it inhibits in vivo poly(A) synthesis by about 80% and decreases the appearance of rapidly labelled RNA in polysomes by about 45%. A small poly(A) molecule 10-30 nucleotides in length is present in rapidly labelled RNA. It appears to be less sensitive to cordycepin than the larger poly(A) and is not found in polysomal RNA.  相似文献   

7.
8.
The RNA of full-grown oocytes of Xenopus laevis contains two distinct size classes of poly(A), designated poly(A)S and poly(A)L, which contain 15–30 (mean = 20) and 40–80 (mean = 61) A residues, respectively. Both poly(A)L and poly(A)S are associated with RNA which is heterogeneous in size. The two classes of poly(A)+ RNA can be separated by affinity chromatography: Only poly(A)L+ RNA binds to oligo(dT)-cellulose under appropriate conditions, but up to 50% of the poly(A)S+ RNA can be isolated from the void fraction by binding to poly(U)-Sepharose. Both classes of poly(A)+ RNA are active as messenger RNA in an in vitro system and yield identical patterns of in vitro protein products. Previtellogenic oocytes contain almost exclusively poly(A)L, which accumulates up to vitellogenesis but remains almost constant in amount (molecules/oocyte) during vitellogenesis and in the full-grown oocyte. Poly(A)S accumulates (molecules/oocyte) from early vitellogenesis up to the full-grown oocyte. The total number of poly(A)+ RNA molecules per oocyte increases throughout oogenesis from 2 × 1010/previtellogenic oocyte [80–90% poly(A)L] to 20 × 1010/full-grown oocyte (25–40% poly(A)L). It is argued that poly(A)S is protected from degradation in the oocyte, thus stabilizing the “maternal” poly(A)+ mRNA.  相似文献   

9.
Structures at the 5′ terminus of poly (A)-containing cytoplasmic RNA and heterogeneous nuclear RNA containing and lacking poly(A) have been examined in RNA extracted from both normal and heat-shocked Drosophila cells. 32P-labeled RNA was digested with ribonucleases T2, T1 and A and the products fractionated by a fingerprinting procedure which separates both unblocked 5′ phosphorylated termini and the blocked, methylated, “capped” termini, known to be present in the messenger RNA of most eukaryotes.Approximately 80% of the 5′-terminal structures recovered from digests of poly(A)-containing Drosophila mRNA are cap structures of the general form m7G5′ppp5′X(m)pY(m)pZp. With respect to the extent of ribose methylation and the base distribution, the 5′-terminal sequences of Drosophila capped mRNA appear to be intermediate between those of unicellular eukaryotes and those of mammals. Drosophila is the first organism known in which type 0 (no ribose methylations), type 1 (one ribose methylation), and type 2 (two ribose methylations) caps are all present. In contrast to mammalian cells, the caps of Drosophila never contain the doubly methylated nucleoside N6,2′-O-dimethyladenosine. Both purines and pyrimidines can be found as the penultimate nucleoside of Drosophila caps and there is a wide variety of X-Y base combinations. The relative frequencies of these different base combinations, and the extent of ribose methylation, vary with the duration of labeling. The large majority of poly(A)-containing cytoplasmic RNA molecules from heat-shocked Drosophila cells are also capped, but these caps are unusual in having almost exclusively purines as the penultimate X base.Greater than 75% of the 5′ termini of heterogeneous nuclear RNA (hnRNA) containing poly(A) and greater than 50% of the termini of hnRNA lacking poly (A) are also capped. Triphosphorylated nucleotides, common as the 5′ nucleotides of mammalian hnRNA, are rare in the poly(A)-containing hnRNA of Drosophila. The frequency of the various type 0 and type 1 cap sequences of cytoplasmic and nuclear poly (A)-containing RNA are almost identical. The caps of hnRNA lacking poly(A) are also quite similar to those of poly-adenylated hnRNA, but are somewhat lower in their content of penultimate pyrimidine nucleosides, suggesting that these two populations of molecules are not identical.  相似文献   

10.
Newly synthesized polyriboadenylic acid [poly(A)]-containing RNA and its poly(A) sequences were isolated and characterized in Xenopus embryonic cells. Upon sedimentation analysis, the poly(A)-containing RNA labeled for 30 min showed a very heterogeneous size distribution ranging from 9 to >40 S. After 5 hr of labeling, the profile became much less heterogeneous and the main component was distributed in the 9–28 S region. The average molecular weight of 6.5–7.0 × 105 daltons was calculated for the 5-hr labeled RNA. This poly(A)-containing RNA, comprising about 10% of the total labeled RNA, was metabolically stable and accumulated linearly for 5 hr. Gel electrophoresis of the RNA revealed the presence of little or no free poly(A) sequences. Most of the poly(A) sequences, which were isolated from 30-min labeled poly(A)-containing RNA migrated as a single discrete component approximately 150 nucleotides long. In contrast, they were slightly smaller (130 nucleotides long) and more heterogeneous, when obtained from the poly(A)-containing RNA labeled for 5 hr. From these results, it may be likely that the embryonic poly(A)-containing RNA is similar in size to the steady-state population of the poly(A)-containing RNA reported to occur in vitellogenic oocytes and cultured kidney cells of the same species.  相似文献   

11.
W M Wood  M Edmonds 《Biochemistry》1981,20(19):5359-5364
When cytoplasmic polyadenylated ribonucleic acid [poly(A+)RNA] from HeLa cells was treated with ribonuclease H (RNase H) and oligodeoxythymidylate [oligo(dT)] to remove its 3'-poly(A) tail, an increased binding to poly(A)-agarose was observed. The bound material, which comprised 4-6% of the initial RNA, contained 65-80% of the oligo(uridylic acid) [oligo(U)] sequences generated by RNase T1 digestion. Oligo(U) isolated from the bound fraction was shown to be 83% U and to have a U/G ratio of 33. In contrast, oligo(U) from the unbound material was 77% U and had a U/G ratio of 13, suggesting that it is shorter and less U rich than the oligo(U) in the bound fraction. On sucrose gradients, oligo(U+)RNA consistently sedimented with a larger s value than oligo(U-) RNA. The oligo(U) content of oligo(U+) RNA suggests one oligo(U) tract of 33 nucleotides per RNA molecule of 2000-3000 residues.  相似文献   

12.
W M Wood  J C Wallace  M Edmonds 《Biochemistry》1985,24(14):3686-3693
Oligo(uridylic acid)-containing [oligo(U+)] RNA was isolated from poly(adenylic acid)-containing [poly(A+)] mRNA from HeLa cells by using either formaldehyde pretreatment or poly(A) removal, both of which resulted in increased accessibility of oligo(U)-rich sequences to a poly(A)-agarose affinity column. In this report, we compared the sequence content of oligo(U+) RNA with that of molecules lacking oligo(U) [oligo(U-) RNA] by their relative hybridization to cDNA reverse-transcribed from poly(A+) mRNA and by comparison of their in vitro translation products synthesized in a rabbit reticulocyte lysate. Formaldehyde-modified poly(A+) RNA, treated to remove the formol adjuncts, was inactive as a template for in vitro protein synthesis; consequently, only depolyadenylated RNA, which retains its translatability, could be used in the translation studies. The hybridization kinetic experiments revealed that oligo(U+) RNA contained most of the sequence information present in oligo(U-) RNA but at a reduced level (ca. 25%), the majority of the oligo(U+) RNA sequences being poorly represented in the cDNA. This result was supported by one- and two-dimensional gel analysis of their in vitro translation products which showed that oligo(U+) RNA, although less effective as a template for translation than oligo(U-) RNA, coded for proteins, the most abundant of which were encoded by rare messages not highly represented in oligo(U-) RNA or the total poly(A+) RNA. Although some minor products were synthesized by both oligo(U+) and oligo(U-) RNA, at least 33 proteins were unique to or highly enriched in the pattern of products directed by oligo(U+) RNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The relative amounts of newly synthesized poly(A)+ and poly(A)? mRNA have been determined in developing embryos of the frog Xenopus laevis. Polysomal RNA was isolated and fractionated into poly(A)+ and poly(A)? RNA fractions with oligo(dT)-cellulose. In normal embryos the newly synthesized polysomal poly(A)+ RNA has a heterodisperse size distribution as expected of mRNA. The labeled poly(A)? RNA of polysomes is composed mainly of rRNA and 4S RNA. The amount of poly(A)? mRNA in this fraction cannot be quantitated because it represents a very small proportion of the labeled poly(A)? RNA. By using the anucleolate mutants of Xenopus which do not synthesize rRNA, it is possible to estimate the percentage of mRNA which contains poly(A) and lacks poly(A). All labeled polysomal RNA larger than 4S RNA which does not bind to oligo(dT)-cellulose in the anucleolate mutants is considered presumptive poly(A)? mRNA. The results indicate that about 80% of the mRNA lacks a poly(A) segment long enough to bind to oligo(dT). The poly(A)+ and poly(A)? mRNA populations have a similar size distribution with a modal molecular weight of about 7 × 105. The poly(A) segment of poly(A)+ mRNA is about 125 nucleotides long. Analysis of the poly(A)? mRNA fraction has shown that it lacks poly(A)125.  相似文献   

14.
The size range of poly(A)-containing RNA from Drosophila melanogaster embryos has been estimated by hybridization with 3H-labeled poly(U) and subsequent fractionation on sucrose gradients. The median size of nuclear poly(A)-containing RNA is about 30 S (6000 nucleotides), and the median size of cytoplasmic poly(A)-containing RNA is about 17 S (1800 nucleotides). The relationship of these sizes to messenger RNA needed to code for protein and to the length of DNA contained in a chromomere is discussed.Research grant support was provided by NIH (6M35558; HD-00266) and NSF (GB-30600).  相似文献   

15.
Synthesis of DNA from Vaccinia Messenger RNA Templates   总被引:3,自引:0,他引:3  
  相似文献   

16.
Key JL  Silflow C 《Plant physiology》1975,56(3):364-369
The occurrence and distribution of poly(A) sequences in the RNA of soybean (Glycine max var. Wayne) have been studied. Only one of the two species of AMP-rich RNA contains poly(A). D-RNA does not contain detectable poly(A) sequences. The TB-RNA is the poly(A) RNA in this system. At least a part (up to 50% or more) of the mRNA in polyribosomes contains a poly(A) sequence. The poly(A) RNA is heterodisperse in size but has a mean size of approximately 18S (2,000 nucleotides) in urea and formamide gels. The poly(A) fragment resulting from ribonuclease A and T1 digestion migrates as a broad band overlapping the 4 to 5.8S regions of the gels with a mean size of somewhat greater than 5S. No evidence was found for the occurrence of a discrete oligo(A) fragment in the poly(A) RNA; however, oligonucleotides which migrate faster than the poly(A) fraction were observed in preparations which were not bound to oligo(dT) cellulose prior to electrophoresis. This oligonucleotide region was enriched in AMP (up to about 65%) as would be expected after ribonuclease A and T1 digestion.  相似文献   

17.
18.
The poly(A) content of early mouse embryos fluctuates widely: after a transient increase in the one-cell embryo, there is a 70% drop in the two-cell and an approximately fivefold increase between the two-cell and early blastocyst stages (L. Pikó and K. B. Clegg, 1982, Dev. Biol.89, 362–378). To shed light on the significance of these changes, we analyzed the size distribution of total poly(A) from embryos at different stages of development by gel electrophoresis and hybridization with [3H]poly(U). The number-average size of poly(A) tracts varies only slightly, from 61 to 77 nucleotides, indicating that the changes in poly(A) content are due primarily to changes in the number of poly(A) sequences, i.e., the number of poly(A)+ mRNA. From these data, the number of poly(A)+ mRNA can be estimated as follows: ovulated egg, 1.7 × 107; one-cell embryo, 2.4 × 107; late two-cell, 0.7 × 107; late eight-cell, 1.3 × 107; and early blastocyst, 3.4 × 107. These results suggest the elimination of the bulk of maternal poly(A)+ mRNA at the two-cell stage, to be replaced by newly synthesized mRNA derived from the embryonic genome. To study the synthesis of poly(A)+ mRNA, we cultured mouse embryos in vitro with [3H]adenosine and analyzed the labeled poly(A)+ RNA as to molecular size, length of the poly(A) tail, and relative distribution of label in poly(A) vs internal locations. We observed an active incorporation of label into large-molecular-weight (average size about 2 kb) poly(A)+ RNA at all stages from the one-cell to the blastocyst. However, in the one-cell embryo, about 70% of the label was localized in the poly(A) tail, suggesting cytoplasmic polyadenylation, and only about 30% was localized in the remainder of the molecule, suggesting the complete new synthesis of a small amount of poly(A)+ RNA. Differences in the size distribution of the labeled poly(A) as compared with the total poly(A) in the one-cell embryo indicate that the labeling is not due to a general turnover of poly(A) tails, but rather to the polyadenylation of previously nonpolyadenylated, stored RNA. Significant new synthesis of poly(A)+ RNA is evident from the two-cell stage onward and most likely accounts for the sharp rise in the number of poly(A)+ RNA molecules by the early blastocyst stage.  相似文献   

19.
R F Hartman  G L Brown  S D Rose 《Biopolymers》1981,20(12):2635-2648
An azo pyrimidine nucleotide has been prepared and enzymatically attached to oligo(A) primers. The nucleotide's azo pyrimidine group has previously been shown to initiate polymerization of methacrylate esters designed to bind marker groups for visualization by microscopy. When attached to RNA molecules complementary to a chromosomal DNA segment, these nucleotides may allow localization of the DNA segment following in situ hybridization of the probe, methacrylate polymerization, and marker attachment. Since mRNA molecules of potential interest as probes bear a 3′-poly(A) tail, the modified nucleotides were added to oligo(A) primers as models. First, N4-ureidocytosine nucleotides were enzymatically added to ApApA, (Ap)9A, or [5′-32P]-(pA)10, using the modified cytidine 5′-diphosphate and “primer-dependent” polynucleotide phosphorylase (M. luteus). In the case of the ApApA-primed reaction, the N4-ureidocytosine nucleotides in the product polynucleotide were converted into azo nucleotides by oxidation with N-bromosuccinimide. The other two primers were employed to study the time course of polynucleotide formation and to verify that primer was indeed being utilized by the enzyme. The suitability of the modified nucleotide for in situ hybridization studies was examined. Poly(N4-ureidocytidylic acid) was prepared from poly(C) and semicarbazide by the bisulfite-catalyzed transamination reaction. It was found that 95% of the N4-ureidocytosine nucleotides in this polynucleotide survive the elevated temperatures typically required for DNA:DNA denaturation and RNA:DNA annealing. When poly(N4-ureidocytidylic acid) was mixed with poly(I) in buffered aqueous salt solutions, no evidence for hybridization was found, so binding of the probe RNA to the denatured chromosomal DNA molecule via the modified nucleotides is not expected. Upon oxidation of poly(N4-ureidocytidylic acid) with N-bromosuccinimide, the azo nucleotides were formed, as judged by the appearance of a characteristic peak at approximately 350 nm in the uv-absorption spectrum of the yellow-orange product, azoRNA. The azo nucleotides in azoRNA exhibited the expected acid lability, which is known to be accompanied by 1-glyceryl methacrylate polymerization in the case of the simple azo pyrimidine. Because 1-glyceryl metharcylate bears substituent glycol groups for attaching heavy atoms or fluorescent markers, it is possible that probe RNA molecules bearing azo nucleotides may be useful for localizing low-multiplicity genes along eukaryotic chromosomes.  相似文献   

20.
Xenogeneic immune RNA (I-RNA) extracted from the spleens and lymph nodes of guinea pigs previously immunized with a murine fibrosarcoma was able to convert normal mouse lymphocytes to effector cells specifically cytolytic to the same murine tumor in vitro. This effect of I-RNA was dose-dependent, and destroyed by treatment with RNase, but not with DNase or pronase. I-RNA was fractionated by ultracentrifugation on a 5–20% sucrose density gradient and the fraction capable of transferring cell-mediated cytotoxicity (CMC) was shown to have a sedimentation coefficient of 8–16 S. I-RNA was also fractionated by oligo(dT)-cellulose affinity chromatography and the active fraction was found to possess polyadenylic acid (poly(A)) sequences thus resembling messenger RNA. The immunological activity of the poly (A)-containing RNA fraction was tumor-specific and RNase-sensitive. In further experiments, I-RNA fractionated by sucrose density gradient ultracentrifugation was subsequently chromatographed. on an oligo(dT)-cellulose column. CMC was transferred only by the fraction which sedimented at 8–16 S and also contained poly (A).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号