首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature plays an important role in the electrophysiology of cardiomyocytes. Pulmonary veins (PVs) are known to initiate paroxysmal atrial fibrillation. The effects of temperature on the arrhythmogenic activity of rabbit single PV and atrial cardiomyocytes were assessed using the whole-cell clamp technique. PV cardiomyocytes had different beating rates at low (22-25 degrees C), normal (38-39 degrees C) and high (40-41 degrees C) temperatures (0.9 +/- 0.1, 3.2 +/- 0.4, 6.4 +/- 0.6 Hz, respectively; p < 0.001). There were different action potential durations and incidences of delayed afterdepolarization in PV cardiomyocytes with pacemaker activity (31, 59, 63%; p < 0.05), PV cardiomyocytes without pacemaker activity (16, 47, 60%; p < 0.001), and atrial myocytes (0, 0, 21%; p < 0.05). However, oscillatory afterpotentials were only found in PV cardiomyocytes with pacemaker activity at normal (50%) or high (68%) temperatures, but not at low temperatures (p < 0.001). Both PV and atrial cardiomyocytes had larger transient inward currents and inward rectified currents at high temperatures. Additionally, PV cardiomyocytes with and without pacemaker activity had larger pacemaker currents at higher temperatures. This study demonstrated that PV cardiomyocytes have an increase in arrhythmogenic activity at high temperatures because of enhanced automaticity, induced triggered activity, or shortening of action potential duration.  相似文献   

2.
Sympathetic nervous system (SNS) plays a key role in cardiac homeostasis and its deregulations always associate with bad clinical outcomes. To date, little is known about molecular mechanisms regulating cardiac sympathetic innervation. The aim of the study was to determine the role of fibroblasts in heart sympathetic innervation. RT-qPCR and western-blots analysis performed in cardiomyocytes and fibroblasts isolated from healthy adult rat hearts revealed that Pro-Nerve growth factor (NGF) and pro-differentiating mature NGF were the most abundant neurotrophins expressed in cardiac fibroblasts while barely detectable in cardiomyocytes. When cultured with cardiac fibroblasts or fibroblast-conditioned medium, PC12 cells differentiated into/sympathetic-like neurons expressing axonal marker Tau-1 at neurites in contact with cardiomyocytes. This was prevented by anti-NGF blocking antibodies suggesting a paracrine action of NGF secreted by fibroblasts. When co-cultured with cardiomyocytes to mimic neurocardiac synapse, differentiated PC12 cells exhibited enhanced norepinephrine secretion as quantified by HPLC compared to PC12 cultured alone while co-culture with fibroblasts had no effect. However, when supplemented to PC12-cardiomyocytes co-culture, fibroblasts allowed long-term survival of the neurocardiac synapse. Activated fibroblasts (myofibroblasts) isolated from myocardial infarction rat hearts exhibited significantly higher mature NGF expression than normal fibroblasts and also promoted PC12 cells differentiation. Within the ischemic area lacking cardiomyocytes and neurocardiac synapses, tyrosine hydroxylase immunoreactivity was increased and associated with local anarchical and immature sympathetic hyperinnervation but tissue norepinephrine content was similar to that of normal cardiac tissue, suggesting depressed sympathetic function. Collectively, these findings demonstrate for the first time that fibroblasts are essential for the setting of cardiac sympathetic innervation and neurocardiac synapse stability. They also suggest that neurocardiac synapse functionality relies on a triptych with tight interaction between sympathetic nerve endings, cardiomyocytes and fibroblasts. Deregulations of this triptych may be involved in pathophysiology of cardiac diseases.  相似文献   

3.
Intrinsic cardiac adrenergic (ICA) cells in developing rat heart constitute a novel adrenergic signaling system involved in cardiac regulation. Regulatory mechanisms of ICA cells remain to be defined. Immunohistochemical study of fetal rat hearts demonstrated ICA cells with catecholamine biosynthetic enzyme tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT). The mRNA of TH and PNMP was also detected in fetal rat hearts before sympathetic innervation. Immunoreactivity of norepinephrine transporter (NET) was localized to ICA cells in rat heart tissue and primary cell culture. For the functional study, the activity of intracellular Ca2+ concentration ([Ca2+]i) transients was quantified by a ratio fluorescent spectrometer in cultured ICA cells and myocytes. ICA cells generated spontaneous [Ca2+]i transients that were eliminated by tetrodotoxin or Ca(2+)-free solutions and showed greatly reduced amplitude with the addition of L-type Ca2+ channel blocker nifedipine. [3H]norepinephrine studies demonstrate release and uptake of norepinephrine. Functional interaction between catecholamines produced by the ICA cells and cocultured myocytes was evident by the effect of the beta-adrenergic blocker atenolol eliciting a dose-dependent reduction in the amplitude and frequency of [Ca2+]i transients of beating myocytes. Hypoxia inhibited [Ca2+]i transient activity of ICA cells, which subsequently produced a reoxygenation-mediated rebound augmentation of [Ca2+]i transients. We conclude that ICA cells are capable of catecholamine synthesis, release, and uptake. They generate spontaneous [Ca2+]i transient activity that can be regulated by oxygen tension. ICA cells may provide an alternative adrenergic supply to maintain cardiac contractile and pacemaker function at rest and during stress in the absence of sympathetic innervation.  相似文献   

4.
We investigated palmitate uptake and utilization by contracting cardiac myocytes in suspension to explore the link between long-chain fatty acid (FA) uptake and cellular metabolism, in particular the role of fatty acid translocase (FAT)/CD36-mediated transsarcolemmal FA transport. For this, an experimental setup was developed to electrically stimulate cardiomyocytes in multiple parallel incubations. Electrostimulation at voltages > or =170 V resulted in cellular contraction with no detrimental effect on cellular integrity. At 200 V and 4 Hz, palmitate uptake (measured after 3-min incubation) was enhanced 1.5-fold. In both quiescent and contracting myocytes, after their uptake, palmitate was largely and rapidly esterified, mainly into triacylglycerols. Palmitate oxidation (measured after 30 min) contributed to 22% of palmitate taken up by quiescent cardiomyocytes and, after stimulation at 4 Hz, was increased 2.8-fold to contribute to 39% of palmitate utilization. The electrostimulation-mediated increase in palmitate uptake was blocked in the presence of either verapamil, a contraction inhibitor, or sulfo-N-succinimidyl-FA esters, specific inhibitors of FAT/CD36. These data indicate that, in contracting cardiac myocytes, palmitate uptake is increased due to increased flux through FAT/CD36.  相似文献   

5.
Human-induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes; however, the electrophysiological properties of hiPSC-derived cardiomyocytes have yet to be fully characterized. We performed detailed electrophysiological characterization of highly pure hiPSC-derived cardiomyocytes. Action potentials (APs) were recorded from spontaneously beating cardiomyocytes using a perforated patch method and had atrial-, nodal-, and ventricular-like properties. Ventricular-like APs were more common and had maximum diastolic potentials close to those of human cardiac myocytes, AP durations were within the range of the normal human electrocardiographic QT interval, and APs showed expected sensitivity to multiple drugs (tetrodotoxin, nifedipine, and E4031). Early afterdepolarizations (EADs) were induced with E4031 and were bradycardia dependent, and EAD peak voltage varied inversely with the EAD take-off potential. Gating properties of seven ionic currents were studied including sodium (I(Na)), L-type calcium (I(Ca)), hyperpolarization-activated pacemaker (I(f)), transient outward potassium (I(to)), inward rectifier potassium (I(K1)), and the rapidly and slowly activating components of delayed rectifier potassium (I(Kr) and I(Ks), respectively) current. The high purity and large cell numbers also enabled automated patch-clamp analysis. We conclude that these hiPSC-derived cardiomyocytes have ionic currents and channel gating properties underlying their APs and EADs that are quantitatively similar to those reported for human cardiac myocytes. These hiPSC-derived cardiomyocytes have the added advantage that they can be used in high-throughput assays, and they have the potential to impact multiple areas of cardiovascular research and therapeutic applications.  相似文献   

6.
CGRP has potent cardiovascular effects but its role in heart failure is unclear. Effects of CGRP on calcium concentrations in fresh adult rat cardiomyocytes, cultured adult cardiomyocytes and neonatal cardiomyocytes were determined by real time fluorescence spectrophotometry. Treatment of cultured adult cardiomyocytes with CGRP resulted in a rapid cessation of beating and a reduction in intracellular calcium. Similar results were obtained in cultured neonatal myocytes. However, rod-shaped adult cardiomyocytes revealed a number of responses; (a) non-beating cells began to beat with increased intracellular calcium; (b) spontaneously beating cells exhibited increased intracellular calcium content and a faster beating rate or (c), myocytes increased their beating rate and became arrhythmic, suggesting that CGRP action on cultured dedifferentiated adult and neonatal myocytes depletes intracellular calcium, whereas in the rod-shaped mature myocytes calcium is retained, pointing to a different mode of action for CGRP on developing and dedifferentiating cardiomyocytes, compared to fully developed cardiomyocytes.  相似文献   

7.
The efficacy of cardiac repair by stem cell administration relies on a successful functional integration of injected cells into the host myocardium. Safety concerns have been raised about the possibility that stem cells may induce foci of arrhythmia in the ischemic myocardium. In a previous work (36), we showed that human cord blood CD34(+) cells, when cocultured on neonatal mouse cardiomyocytes, exhibit excitation-contraction coupling features similar to those of cardiomyocytes, even though no human genes were upregulated. The aims of the present work are to investigate whether human CD34(+) cells, isolated after 1 wk of coculture with neonatal ventricular myocytes, possess molecular and functional properties of cardiomyocytes and to discriminate, using a reporter gene system, whether cardiac differentiation derives from a (trans)differentiation or a cell fusion process. Umbilical cord blood CD34(+) cells were isolated by a magnetic cell sorting method, transduced with a lentiviral vector carrying the enhanced green fluorescent protein (EGFP) gene, and seeded onto primary cultures of spontaneously beating rat neonatal cardiomyocytes. Cocultured EGFP(+)/CD34(+)-derived cells were analyzed for their electrophysiological features at different time points. After 1 wk in coculture, EGFP(+) cells, in contact with cardiomyocytes, were spontaneously contracting and had a maximum diastolic potential (MDP) of -53.1 mV, while those that remained isolated from the surrounding myocytes did not contract and had a depolarized resting potential of -11.4 mV. Cells were then resuspended and cultured at low density to identify EGFP(+) progenitor cell derivatives. Under these conditions, we observed single EGFP(+) beating cells that had acquired an hyperpolarization-activated current typical of neonatal cardiomyocytes (EGFP(+) cells, -2.24 ± 0.89 pA/pF; myocytes, -1.99 ± 0.63 pA/pF, at -125 mV). To discriminate between cell autonomous differentiation and fusion, EGFP(+)/CD34(+) cells were cocultured with cardiac myocytes infected with a red fluorescence protein-lentiviral vector; under these conditions we found that 100% of EGFP(+) cells were also red fluorescent protein positive, suggesting cell fusion as the mechanism by which cardiac functional features are acquired.  相似文献   

8.
The hypothesis of pacemaker level origin of thermal compensation in heart rate was tested by recording action potentials (AP) in intact sinoatrial tissue and enzymatically isolated pacemaker cells of rainbow trout acclimated at 4 degrees C (cold) and 18 degrees C (warm). With electrophysiological recordings, the primary pacemaker was located at the base of the sinoatrial valve, where a morphologically distinct ring of tissue comprising myocytes and neural elements was found by histological examination. Intrinsic beating rate of this pacemaker was higher in cold-acclimated (46 +/- 6 APs/min) than warm-acclimated trout (38 +/- 3 APs/min; P < 0.05), and a similar difference was seen in beating rate of isolated pacemaker cells (44 +/- 6 vs. 38 +/- 6 APs/min; P < 0.05), supporting the hypothesis that thermal acclimation modifies the intrinsic pacemaker mechanism of fish heart. Inhibition of sarcoplasmic reticulum (SR) with 10 microM ryanodine and 1 microM thapsigargin did not affect heart rate in either warm- or cold-acclimated trout at 11 degrees C but reduced heart rate in warm-acclimated trout from 74 +/- 2 to 42 +/- 6 APs/min (P < 0.05) at 18 degrees C. At 11 degrees C, a half-maximal blockade of the delayed rectifier K+ current (I(Kr)) with 0.1 microM E-4031 reduced heart rate more in warm-acclimated (from 45 +/- 1 to 24 +/- 5 APs/min) than cold-acclimated trout (56 +/- 3 vs. 48 +/- 2 APs/min), whereas I(Kr) density was higher and AP duration less in cold-acclimated trout (P > 0.05). Collectively, these findings suggest that a cold-induced increase in AP discharge frequency is at least partly due to higher density of the I(Kr) in the cold-acclimated trout, whereas contribution of SR Ca2+ release to thermal compensation of heart rate is negligible.  相似文献   

9.
收缩活动促进新生大鼠培养心室肌细胞的^3H—亮氨酸...   总被引:1,自引:1,他引:0  
丁小凌  周承愉 《生理学报》1992,44(6):591-596
To determine whether contraction could influence cell growth, the rate of protein synthesis (3H-leucine incorporation) and cell diameter and volume were measured in cultured neonatal rat cardiac myocytes beating spontaneously or arrested by high potassium. In medium supplemented with 10% calf serum, the 3H-leucine incorporation for 24 h in contracting myocytes (CMC) was significantly higher by 14.2% than that in quiescent myocytes (QMC), i.e. 1,229 +/- 29 cpm/10(5) cells vs. 1,076 +/- 60 cpm/10(5) cells (P < 0.01, n = 5 for each group). The cell diameter and cell volume in QMC group were respectively 15.14 +/- 0.42 microns and 1,842 +/- 123 microns3, while in the CMC group the corresponding figures reached to 16.82 +/- 0.64 microns3 and 2,495 +/- 210 microns3, increased by 11.1% and 35.5% respectively (P < 0.01, n = 6 for each group). With prolongation of culture time, the differences in these parameters between CMC and QMC became even more significant. In all these experiments, there was no significant difference in cell number between the two groups (P > 0.05). It is concluded that contraction per se can accelerate protein synthesis and cell growth in neonatal rat ventricular myocardium.  相似文献   

10.
In rabbit right atria beating in a spontaneous sinus rhythm, myocytes of two types were studied, which differ by the initial form of action potentials. First-class antiarrhythmics and a gradual decrease in extracellular Na+ concentration induced qualitatively similar and unidirectional changes in the form of action potentials of myocytes. In some myocytes of the "conducting system" type, a slow diastolic depolarization was observed after repolarization, and the form of their action potentials became similar to that of the pacemaker cells. An enhancement of the action caused short-time arrhythmias.  相似文献   

11.
Abstract The activities of the various molecular forms of acetylcholinesterase (AChE) were measured in monolayer cultures of neonatal rat pineal cells grown alone and in co-culture with sympathetic neurons. AChE forms characterized by sedimentation coefficients of 4S, 6.5S, and 10S were found in the neuronal and pineal cultures, as well as in the co-cultures. The 16S AChE form was found only in the neuronal cultures. Total AChE activity increased with culture age in the co-cultures, but it decreased in pineal cells cultured alone. The low level of activity present in the neuronal cultures did not change markedly over the 27-day culture period. These results, which show bidirectional neuron-pineal cell effects, suggest that AChE molecular forms may be important markers to study the mechanisms underlying neuron-target cell interaction in the developing sympathetic nervous system.  相似文献   

12.
To investigate the effect of nitric oxide (NO) on cardiac energy metabolism, isolated cardiomyocytes of Wistar rats were incubated in an Oxystat system at a constant ambient PO2 (25 mmHg) and oxygen consumption (VO2); free intracellular Ca(2+) (fura 2), free cytosolic adenosine [S-adenosylhomocysteine (SAH) method], and mitochondrial NADH (autofluorescence) were measured after application of the NO donor morpholinosydnonimine (SIN-1). In Na(+)-free medium (contracting cardiomyocytes), VO2 increased from 7.9 +/- 1.2 to 26.4 +/- 3.1 nmol x min(-1) x mg protein(-1). SIN-1 (100 micromol/l) decreased VO2 in contracting (-21 +/- 3%) and in quiescent cells (-24 +/- 7%) by the same extent. Inhibition of VO2 was dose dependent (EC(50): 10(-7) mol/l). S-nitroso-N-acetyl-penicillamine, another NO donor, also inhibited VO2, whereas SIN-1C (100 micromol/l), the degradation product of SIN-1, displayed no inhibitory effect. Intracellular Ca(2+) remained unchanged, and inhibition of protein kinases G, A, or C did not antagonize the effect of NO. Mitochondrial NADH increased with NO, indicating a reduced flux through the respiratory chain. In quiescent but not in contracting cardiomyocytes, NO significantly increased adenosine, indicating a reduced energy status. These data suggest the following. 1) NO decreases cardiac respiration, most likely via direct inhibition of the respiratory chain. 2) Whereas in quiescent cardiomyocytes the inhibition of aerobic ATP formation by NO causes reduction in energy status, contracting cells are able to compensate for the NO-induced inhibition of oxidative phosphorylation, maintaining energy status constant.  相似文献   

13.
Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml) or nerve growth factor (50 ng/ml). As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR) with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs) attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.  相似文献   

14.
Turnover of cardiac pacemaker cells may occur during the lifetime of the body, and we recently raised the hypothesis that specialized cardiac cells have in common the potential to generate cardiomyocytes from fibroblasts. To examine this hypothesis, we analyzed the ability of atrioventricular node cells (AVNCs) to generate functional cardiomyocytes in long-term culture. AVNCs were isolated from adult guinea pig hearts and cultured for up to three weeks. Under phase-contrast microscopic observation over time, it was found that within a week, a number of fibroblasts gathered around the AVNCs and formed cell clusters, and thereafter the cell clusters started to beat spontaneously. The nascent cell clusters expanded their area gradually by three weeks in culture and expressed specific cardiac genes and proteins. Maturation of newly formed cardiomyocytes seems to be slow in cultures of AVNCs compared with those of sinoatrial node cells. Stimulation of muscarinic receptors with acetylcholine induced a beating rate decrease which was blocked by atropine, and activation of adenylate cyclase activity with forskolin increased the beat rate, while stimulation of beta adrenoceptors by isoproterenol had no effect. These results indicate that AVNCs form a cluster of cells with properties of functional cardiomyocytes and provide evidence to support the hypothesis.  相似文献   

15.
16.
During development, cardiac commitment within the mesoderm requires endoderm-secreted factors. Differentiation of embryonic stem cells into the three germ layers in vitro recapitulates developmental processes and can be influenced by supplements added to culture medium. Hence, we investigated the effect of fetal bovine serum (FBS) and KnockOut serum replacement (SR) on germ layers specification and cardiac differentiation of H1 human embryonic stem cells (hESC) within embryoid bodies (EB). At the time of EB formation, FBS triggered an increased apoptosis. As assessed by quantitative PCR on 4-, 10-, and 20-day-old EB, FBS promoted a faster down-regulation of pluripotency marker Oct4 and an increased expression of endodermal (Sox17, alpha-fetoprotein, AFP) and mesodermal genes (Brachyury, CSX). While neuronal and hematopoietic differentiation occurred in both supplements, spontaneously beating cardiomyocytes were only observed in FBS. Action potential (AP) morphology of hESC-derived cardiomyocytes indicated that ventricular cells were present only after 2 months of culture. However, quantification of myosin light chain 2 ventricular (mlc2v)-positive areas revealed that mlc2v-expressing cardiomyocytes could be detected already after 2 weeks of differentiation, but not in all beating clusters. In conclusion, FBS enabled cardiac differentiation of hESC, likely in an endodermal-dependent pathway. Among cardiac cells, ventricular cardiomyocytes differentiated over time, but not as the predominant cardiac cell subtype.  相似文献   

17.
Aim The interactions between primary sensory neurons and cardiac myocytes are still unclear. In the present study, the co-culture model of dorsal root ganglion (DRG) explant and cardiac myocytes was used to characterize the morphological relationship between primary sensory nerve endings and cardiac myocytes and to investigate whether cardiac myocytes could induce substance P (SP) and calcitonin gene-related peptide (CGRP) synthesis in DRG neurons and release from DRG neurons in the neuromuscular co-cultures. Methods The formation of neuromuscular junctions was observed with scanning electron microscopy (SEM). SP and CGRP expression were detected by immunocytochemistry. Basal SP and CGRP release and capsaicin-evoked SP and CGRP release were analyzed by radioimmunoassay (RIA). Results In this study, neuromuscular junctions were observed in the co-cultures of DRG explant and cardiac myocytes. SP-immunoreactive (IR) and CGRP-IR neurons were detected in both neuromuscular co-cultures and DRG explant cultures, but the number of SP-IR and CGRP-IR neurons migrating from DRG explant was significantly increased in neuromuscular co-cultures. Capsaicin-evoked SP and CGRP release but not basal SP and CGRP release in neuromuscular co-cultures increased significantly as compared with that in the cultures of DRG explant alone. Conclusions The results implicated that the morphological relationship between sensory nerve terminal and cardiac myocyte is much more close in vitro than it is in vivo. Cardiac myocytes may induce sensory neuropeptide synthesis and capsaicin-evoked neuropeptide release in neuromuscular co-cultures. Further experiment needs to be performed about the significance of neuropeptide synthesis and capsaicin-evoked neuropeptide release induced by target cardiac myocytes. Zhen Liu and Huaxiang Liu contributed equally to this article.  相似文献   

18.
We have studied the development of synaptic transmission by innervating sympathetic neurons in vitro and monitoring synaptic activity with both physiological recording and cytochrome oxidase histochemistry. The onset of synaptic transmission was reflected in increased cytochrome oxidase reaction product within individual neurons. Within 24 hours of co-culture, relatively low frequency suprathreshold potentials were recorded in approximately 20% of the innervated neurons. At this stage the cytochrome oxidase activity of innervated neurons, as assessed by optical density of the histochemical reaction product, was increased twofold compared with uninnervated neurons. Over the next 2-4 days of innervation, changes in the pattern and extent of synaptic activity and superthreshold events were accompanied by a net fourfold increase in cytochrome oxidase activity levels compared with noninnervated neurons. The increase in density of cytochrome oxidase reaction product observed after innervation was reversed completely by blockade of synaptic transmission. Differences in the efficacy of synaptic input provided to the sympathetic neurons by appropriate versus inappropriate presynaptic sources was determined by co-culturing sympathetic neurons with explants that contained either preganglionic neurons or somatic motor neurons. Although sympathetic neurons innervated by motor neuron explants had increased levels of cytochrome oxidase activity compared with noninnervated controls, the density of cytochrome oxidase reaction product was even greater in sympathetic neurons innervated by preganglionic explants. We conclude that both the onset of innervation of sympathetic neurons as well as the subsequent maturation of synaptic function is directly reflected in graded increases in cytochrome oxidase reaction product.  相似文献   

19.
This study examined whether mucosal stimulation activates long secretomotor neural reflexes and, if so, how they are organized. The submucosa of in vitro full thickness guinea pig ileal preparations was exposed in the distal portion and intracellular recordings were obtained from electrophysiologically identified secretomotor neurons. Axons in the intact mucosa of the oral segment were stimulated by a large bipolar stimulating electrode. In control preparations, a single stimulus pulse evoked a fast excitatory postsynaptic potential (EPSP) in 86% of neurons located 0.7-1.0 cm anal to the stimulus site. A stimulus train evoked multiple fast EPSPs, but slow EPSPs were not observed. To examine whether mucosal stimulation specifically activated mucosal sensory nerve terminals, the mucosa/submucosa was severed from the underlying layers and repositioned. In these preparations, fast EPSPs could not be elicited in 89% of cells. Superfusion with phorbol dibutyrate enhanced excitability of sensory neurons and pressure-pulse application of serotonin to the mucosa increased the fast EPSPs evoked by mucosal stimulation, providing further evidence that sensory neurons were involved. To determine whether these reflexes projected through the myenteric plexus, this plexus was surgically lesioned between the stimulus site and the impaled neuron. No fast EPSPs were recorded in these preparations following mucosal stimulation whereas lesioning the submucosal plexus had no effect. These results demonstrate that mucosal stimulation triggers a long myenteric pathway that activates submucosal secretomotor neurons. This pathway projects in parallel with motor and vasodilator reflexes, and this common pathway may enable coordination of intestinal secretion, blood flow, and motility.  相似文献   

20.
Postsynaptic potentials evoked by stimulation of ipsilateral and contralateral horizontal semicircular canals in motoneurons of muscles tilting and turning the head were investigated in acute experiments on cats anesthetized with chloralose and pentobarbital. Stimulation of the ipsilateral canal evoked EPSPs with latent periods varying from 1.8 to 10.0 msec in 25 of these motoneurons and IPSPs with latent periods varying from 1.9 to 3.9 msec in 10 of them. Calculation of the impulse conduction time from the ipsilateral semicircular canal through Deiters' nucleus to the cervical motoneurons indicates that EPSPs with latent periods of under 3.8 msec may be regarded as disynaptic, and those with latent periods of over 3.8 msec as polysynaptic. Stimulation of the contralateral canal evoked EPSPs with latent periods varying from 1.8 to 6.0 msec in 19 motoneurons and IPSPs with latent periods varying from 3.2 to 3.9 msec in two cells. The possible pathways of transmission of these influences and their functional role are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号