首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ontogeny of calcitonin gene-related peptide immunoreactivity (CGRP-IR) was evaluated immunohistochemically in 67 human fetal or newborn lungs previously analyzed for calcitonin immunoreactivity (CT-IR). CGRP-IR was present by 10 weeks of gestation in rare, solitary neuroendocrine (NE) cells of developing conducting airways in two of eight first-trimester lungs. During the second trimester, cells with CGRP-IR were found consistently (21/23 fetuses). However, the numbers of positively staining cells did not appear to increase in these fetuses or in third-trimester infants dying of non-pulmonary causes. The highest concentrations of CGRP-IR cells were seen in lungs of premature infants with advancing chronic lung disease associated with bronchopulmonary dysplasia (BPD). CGRP-IR was seen earlier in gestation and in greater numbers of NE cells than was calcitonin immunoreactivity (CT-IR) reported previously in these same fetal lungs (Lab Invest 52:52, 1985). Its presence paralleled that of CT-IR in postnatal chronic lung disease.  相似文献   

2.
Summary The innervation of the pulmonary vasculature of the semi-arboreal rat snake,Elaphe obsoleta, was examined with glyoxylic acid-induced catecholamine histochemistry, peptide immunohistochemistry, and in vitro perfusion of the pulmonary vasculature. An adrenergic innervation was present on the pulmonary artery, the smaller pulmonary arteries, the veins draining the lung, and the main pulmonary vein. Vasoactive intestinal polypeptide-like immunoreactive axons were observed on the pulmonary artery and vein, small arteries, and occasionally small veins within the lung parenchyma. A dense plexus of substance P-like immunoreactive (SP-LI) axons was observed on the distal extrinsic pulmonary artery. SP-LI axons were found on the more distal arteries within the lung parenchyma, but not on the veins. The distribution of calcitonin gene-related peptide- and SP-LI axons was similar suggesting that the axons are sensory nerves. In the perfused pulmonary vasculature, vagal stimulation caused a predominant vasoconstriction which was abolished by atropine indicating it was cholinergic in nature. A post-stimulus vasodilatation was abolished by bretylium and propranolol indicating it was adrenergic in nature. The responses to nerve stimulation were located in both the extrinsic and intrinsic pulmonary vasculature. No evidence for non-adrenergic, noncholinergic transmission to the vascular smooth muscle was found. The extensive, functional innervation of the main pulmonary artery, as well as the more distal vasculature within the lung, may reflect adaptation to cardiovascular problems imposed by an elongated body and arboreal habits.Abbreviations VIP vasoactive intestinal polypeptide - VIP-LI vasoactive intestinal polypeptide-like immunoreactive - SP substance P - SP-LI substance P-like immunoreactive - SOM somatostatin - SOM-LI somatostatin-like immunoreactive - CGRP calcitonin gene-related peptide - CGRP-LI calcitonin gene-related peptide-like immunoreactive - NANC non-adrenergic noncholinergic - PI perfusion inflow  相似文献   

3.
Summary Neuroendocrine cells of the lung, occurring singly or in clusters known as neuroepithelial bodies, contain a variety of biologically active compounds, including several neuropeptides. We have investigated the localization of calcitonin and calcitonin gene-related peptide (CGRP) within single and grouped neuroendocrine cells in the respiratory epithelium of rats by an immunohistochemical double-staining technique which uses specific antisera raised in heterogeneous animal species. Calcitonin- and CGRP-immunoreactivities were nearly totally co-localized in both single neuroendocrine cells and neuroepithelial bodies. CGRP-immunoreactivity was also present in neurons in the jugular, nodose and dorsal root ganglia. The calcitonin-immunoreactivity in neuroendocrine cells, as in thyroid parafollicular (C) cells, was abolished by preincubation of the anticalcitonin serum with synthetic calcitonin. The CGRP-immunoreactivity in neuroendocrine cells and in the neuronal cells was abolished by preincubation of anti-CGRP serum with synthetic CGRP. Thus, while the calcitonin gene is expressed exclusively or predominantly as either calcitonin or CGRP in all other tissues except thyroid C-cells, our results strongly suggest that both peptides are expressed in the rat bronchopulmonary neuroendocrine cells.  相似文献   

4.
Summary The presence of bioactive peptides in the gut and their possible electrophysiological effects on the intestinal epithelium were studied in two teleost species, the tilapia (Oreochromis mossambicus) and the goldfish (Carassius auratus). Vasoactive intestinal polypeptide-like immunoreactive nerve fibres were found beneath the intestinal epithelium of both species. Galanin-, metenkephalin-and calcitonin gene-related peptide-like immunoreactive nerve fibres were found exclusively in the mucosa of the tilapia. Both species had vasoactive intestinal polypeptide-, enkephalin- or neuropeptide Y-like immunoreactive endocrine cells; calcitonin gene-related peptide-like immunoreactive endocrine cells were additionally found in the tilapia. Somatostatin- and dopamine--hydroxylase-like immunoreactivities were not observed. Nerve cell bodies in the myenteric plexus of both species showed immunoreactivity for calcitonin gene-related peptide-, vasoactive intestinal polypeptide-, and galanin-like peptide. Enkephalin-like immunoreactive nerve cell bodies were present in the tilapia only. None of the peptides had a pronounced electrogenic effect. However, calcitonin gene-related peptide added to stripped intestinal epithelium of the tilapia, reduced the ion selectivity, and addition of galanin increased the ion selectivity. In goldfish intestine, both galanin and calcitonin gene-related peptide were without effect. Enkephalin counteracted the serotonin-induced reduction of the ion selectivity of the goldfish intestinal epithelium, but had no effect on the tilapia epithelium. In both species, vasoactive intestinal polypeptide reduced the ion selectivity of the intestinal epithelium, and neuropeptide Y induced an increase of the ion selectivity. Somatostatin showed no effect on the epithelial ion selectivity of either species. Tetrodotoxin did not inhibit the effects of the peptides studied. The changes in ion selectivity suggest that the enterocytes may be under the regulatory control of these peptides.  相似文献   

5.
Summary The lungs of five species of European Anura and one species of Urodela (Triturus alpestris) have been studied by immunohistochemical methods to determine the occurrence, localization and distribution of serotonin, neuron-specific enolase, and eight regulatory peptides reported in the mammalian respiratory tract.Single and groups of serotonin-immunoreactive cells, corresponding to neuroendocrine cells of the mammalian lung, were identified in lungs of all amphibian species studied. Immunoreactivity for neuron-specific enolase was localized mainly in pulmonary nerves, nerve cell bodies and neuroendocrine cells. The localization and distribution of regulatory peptides varied among species. Bombesin and gastrin-releasing peptide immunoreactivities (predominant peptides in human lung) were localized mostly in submucosal nerves. Single bombesin-immunoreactive cells were found only in lungs of Urodela, i.e., Triturus alpestris. Occasional single cells, immunoreactive for somatostatin and leu-enkephalin were identified in lungs of Bombina variegata and a few cholecystokinin-immunoreactive cells in Hyla arborea. In all anuran species, numerous substance P-immunoreactive nerves were identified in submucosa, pulmonary septa and around blood vessels. No immunoreactive cells or nerves were demonstrated with antibodies against calcitonin and vasoactive intestinal peptide.The term pulmonary neuroendocrine (NE) cells (used here) does not imply neural origin or classical endocrine function for these cells, but rather indicates their potential involvement in neurohormonal regulation of pulmonary function (Cutz 1982)Supported by grant to E.C. from Medical Research Council of Canada (MT-7641)  相似文献   

6.
Summary Calcitonin gene-related peptide immunoreactivity was localized immunohistochemically in nerve fibers innervating the biliary pathway and liver of the guinea-pig. Immunoreactive fibers are present in all layers of the gallbladder and biliary tract and are particularly numerous around blood vessels. In the liver, immunoreactive processes are usually restricted to the interlobular space and porta hepatis, and only a few, very thin, beaded processes were observed in the hepatic parenchyma. A rich innervation is also associated with the vena portae. Positive ganglion cell bodies were not visualized within the ganglionated plexus of the biliary system, whereas they were found in the myenteric and submucosal plexus in the cranial portion of the duodenum corresponding to the sphincter of Oddi. The vast majority, if not all, of calcitonin gene-related peptide-immunoreactive fibers contain substance P immunoreactivity; however, there are some substance P-containing fibers lacking calcitonin gene-related peptide immunoreactivity. The lack of co-occurrence of calcitonin gene-related peptide and substance P immunoreactivities in intrinsic ganglion cells suggests that these two peptides are coexpressed in the extrinsic component of the innervation of the hepatobiliary system.  相似文献   

7.
Summary Although peptide neurotransmitters have been shown to modulate hormone secretion in many glands, there are very few studies of neurotransmitters in the parathyroid gland. Bovine parathyroid glands were collected at a local abattoir, fixed with paraformaldehyde, sectioned using a cryostat, and stained by indirect immunohistochemistry for calcitonin gene-related peptide and substance P. We were able to positively identify both neuropeptides. Nerve fibres containing calcitonin gene-related peptide and substance P were identified in contact with the tunica media of arteries and arterioles and dispersed throughout the stroma of the gland. While many of the fibres encircled parenchymal lobules, no intimate contact with the peripheral chief cells was observed. All immunoreactive fibres were found to contain both neuropeptides. Since calcitonin gene-related peptide and substance P are vasodilators, they may increase blood flow within the gland. In addition, the neuropeptides may diffuse from perilobular nerve fibres into the parenchyma, thereby modulating secretion of parathyroid hormone.  相似文献   

8.
Indirect double immunofluorescence labelling for demonstrating nine neuropeptides in the kidney of the bullfrog, Rana catesbeiana, revealed for the first time the occurrence, distribution, and coexistence of certain neuropeptides in the kidney of the submammalian vertebrates. Substance P, neuropeptide Y, and calcitonin generelated peptide were localized in nerve fibers distributed along the afferent arterioles connected with the glomeruli, and along the capillary network between uriniferous tubules. Neuropeptide Y and calcitonin gene-related peptide immunoreactive fibers were more numerous than substance P immunoreactive fibers. In these two regions, about one half of the neuropeptide Y or calcitonin in gene-related peptide fibers contained substance P. No immunoreactivity of vasoactive intestinal polypeptide, somatostatin, FMRFamide, or leucine- and methionine-enkephalins was detected in the bullfrog kidney.  相似文献   

9.
Synaptic contact between dynorphin A(1–8)-like immunoreactive lamina V spinal neurons and calcitonin gene-related peptide-like immunoreactive axon terminals was demonstrated using the immuno-electron microscopic mirror technique in a rat model of peripheral inflammation and hyperalgesia. Adjacent tissue sections were immunocytochemically labeled for either dynorphin A(1–8) or calcitonin gene-related peptide and examined at the electron microscopic level for the presence of synaptic contacts. The results suggest that some opioid neurons which exhibit a dynamic increase in dynorphin peptide associated with peripheral inflammation and hyperalgesia receive direct monosynaptic input from presumptive nociceptive primary afferents.  相似文献   

10.
The rat medullary thyroid carcinoma cell line, CA-77, is known to express the calcitonin gene and the cell line has been used for characterization of procalcitonin. The present investigations concentrate on a molecular characterization of the calcitonin gene-related peptide (CGRP) expressed by a subclone of this cell line. The investigations demonstrate that this subclone produces significantly more CGRP compared to calcitonin. Gel chromatography of cell extracts demonstrates heterogeneity for both CGRP and calcitonin, but a significant amount of immunoreactivity elutes corresponding to the elution position for synthetic CGRP and calcitonin, respectively. The gel chromatogram for CGRP demonstrates four immunoreactive peaks with Kd of 0.42, 0.53, 0.68, and 0.85. The immunoreactive peak with Kd 0.42 elutes corresponding to synthetic rat CGRP. The four immunoreactive peaks were characterized by high pressure liquid chromatography followed by sequence analysis and mass spectrometry. The immunoreactive peak with Kd 0.42 was identified as rat -CGRP as was the peak with Kd 0.53. The peak with Kd 0.68 was identified as 19–37 rat -CGRP and the peak with Kd 0.85 as 28–37 rat -CGRP. In summary, we find that the CA-77 cell line expresses large quantities of normally processed amidated -CGRP and specific fragments thereof. However, the cell line does not express detectable levels of rat β-CGRP. The findings indicate that the CA-77 cell line can be useful for studies of calcitonin/CGRP gene expression.  相似文献   

11.
Summary The peptidergic innervation of lymphoid tissue and the lung in relation to mast cells was studied in rat. The sensitivity of neuropeptide-containing nerves to capsaicin treatment and immunization was also examined. Measurements of the content of neurokinin A and calcitonin gene-related peptide revealed that the lung contained the highest content of both neuropeptides; lymph nodes had intermediate levels, whereas the spleen had the lowest content. Immuhohistochemistry showed that the calcitonin gene-related peptide- and neurokinin A-immunoreactive nerves in lymph nodes were mainly found around blood vessels, whereas in the lung the nerves were present within the lining respiratory epithelium, bronchial smooth muscle, around blood vessels and close to lymphoid aggregates. Combined immunohistochemistry for serotonin (5-hydroxytryptamine), as a marker for mast cells, and tachykinins or calcitonin gene-related peptide revealed that a close association was often present between the nerves and 5-hydroxytryptamine-positive cells in the bronchi of the lung, while 5-hydroxytryptamine-positive cells were not observed in lymph nodes. The neurokinin A and calcitonin gene-related peptide content in lymph nodes, spleen and lung, but not the content of neuropeptide Y, was markedly decreased by capsaicin treatment, suggesting a sensory origin for the two former peptides. Aerosol immunization increased the levels of calcitonin gene-related peptide in the lung, whereas the content in mediastinal lymph nodes was not affected. These data demonstrate a peptidergic innervation mainly of blood vessels in lymphoid tissue and a close relation between sensory nerves and mast cells as well as lymphoid aggregates in the bronchi of the lung. This further suggests that the sensory innervation of lymph nodes is mainly related to regulation of vascular tone and lymph flow. Furthermore, at the site of immunization, i.e., in the airway mucosa, sensory nerve mediators may interact both with mast cells and lymphoid cells.  相似文献   

12.
The pulmonary mucosa of three species of ancient fish was studied immunohistochemically to show the distribution of serotonin, regarded as the main monoamine of mammalian bronchopulmonary paraneurons. Serotonin-like immunoreactive cells, dispersed through the airway epithelium as single cells, were found in all the fish species studied. They are presumably equivalent to the neuroendocrine cells reported in the lungs of mammalian and submammalian vertebrates. However, the precise role and the function of these cells remain unknown. Since the species studied belong to the most primitive extant groups of ancient fish, the present investigation suggests that serotonin is widely distributed in the lungs of the vertebrates. Several peptides, known to be specific cytochemical markers for the identification of the pulmonary neuroendocrine cells of mammals, are being investigated in the lungs of the fish species studied. They may help to trace the phylogeny of the pulmonary neuroendocrine cell system and to elucidate its function in lower vertebrates.  相似文献   

13.
Summary The pulmonary mucosa of three species of ancient fish was studied immunohistochemically to show the distribution of serotonin, regarded as the main monoamine of mammalian bronchopulmonary paraneurons. Serotonin-like immunoreactive cells, dispersed through the airway epithelium as single cells, were found in all the fish species studied. They are presumably equivalent to the neuroendocrine cells reported in the lungs of mammalian and submammalian vertebrates. However, the precise role and the function of these cells remain unknown. Since the species studied belong to the most primitive extant groups of ancient fish, the present investigation suggests that serotonin is widely distributed in the lungs of the vertebrates. Several peptides, known to be specific cytochemical markers for the identification of the pulmonary neuroendocrine cells of mammals, are being investigated in the lungs of the fish species studied. They may help to trace the phylogeny of the pulmonary neuroendocrine cell system and to elucidate its function in lower vertebrates.  相似文献   

14.
Summary Immunoreactivity for calcitonin gene-related peptide is demonstrated for the first time in neuroepithelial bodies in the lung of newborn cats after Bouin fixation and embedding in paraffin. The intense staining clearly identifies these bodies at the level of bronchioli and alveoli. Occasionally, single neuroepithelial endocrine cells, displaying immunoreactivity for calcitonin gene-related peptide are observed. In the kitten lung, identification and localization of neuroepithelial bodies after immunocytochemical staining for calcitonin gene-related peptide are superior to the analysis based on other techniques, i.e., the argyrophilic reaction, periodic acid Schiff-lead hematoxylin method, and immunocytochemical staining for serotonin. The serial-section technique revealed that in neuroepithelial bodies of the newborn kitten lung, immunoreactivity for calcitonin gene-related peptide coexists with immunoreactivity for serotonin in individual cells. The functional significance of the calcitonin gene-related peptide in neuroepithelial bodies remains to be elucidated.  相似文献   

15.
Pulmonary hypertension is common in bronchopulmonary dysplasia and is associated with increased mortality and morbidity. This pulmonary hypertension is due to abnormal microvascular development and pulmonary vascular remodeling resulting in reduced cross‐sectional area of pulmonary vasculature. The epidemiology, etiology, clinical features, diagnosis, suggested management, and outcomes of pulmonary hypertension in the setting of bronchopulmonary dysplasia are reviewed. In summary, pulmonary hypertension is noted in a fifth of extremely low birth weight infants, primarily those with moderate or severe bronchopulmonary dysplasia, and persists to discharge in many infants. Diagnosis is generally by echocardiography, and some infants require cardiac catheterization to identify associated anatomic cardiac lesions or systemic‐pulmonary collaterals, pulmonary venous obstruction or myocardial dysfunction. Serial echocardiography and B‐type natriuretic peptide measurement may be useful for following the course of pulmonary hypertension. Currently, there is not much evidence to indicate optimal management approaches, but many clinicians maintain oxygen saturation in the range of 91 to 95%, avoiding hypoxia and hyperoxia, and often provide inhaled nitric oxide, sometimes combined with sildenafil, prostacyclin, or its analogs, and occasionally endothelin‐receptor antagonists. Birth Defects Research (Part A) 100:240–246, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
This review focuses on the evolutionary and functional relationship of calcitonin receptor-stimulating peptide (CRSP) with calcitonin (CT)/calcitonin gene-related peptide (CGRP) in mammals. CRSP shows high sequence identity with CGRP, but distinct biological properties. CRSP genes (CRSPs) have been identified in mammals such as pigs and dogs of the Laurasiatheria, but not in primates and rodents of the Euarchontoglires or in non-placental mammals. CRSPs have genomic organizations highly similar to those of CT/CGRP genes (CT/CGRPs), which are located along with CGRPs in a locus between CYP2R1 and INSC, while the other members of the CGRP superfamily, adrenomedullin and amylin, show genomic organizations and locations distinct from CT, CGRP, and CRSP. Thus, we categorized these three peptides into the CT/CGRP/CRSP family. Non-placental mammals having one and placental mammals having multiple CT/CGRP/CRSP family genes suggests that multiplicity of CT/CGRP started at an early stage of mammalian evolution. In the placental mammals, Laurasiatheria generally possesses multiple CRSPs and only one CT/CGRP, while Euarchontoglires possesses CT/CGRP and CGRPβ but no CRSP, indicating an increase in the diversity and multiplicity of this family of genes in mammalian evolution. Phylogenetic analysis suggests that some CRSPs have been generated very recently in mammalian evolution. Taken together, the increase in the number and complexity of the CT/CGRP/CRSP family genes may have due to evolutionary pressure to facilitate adaptation during mammalian evolution. In this regard, it is important to elucidate the physiological roles of CT, CGRP and CRSP from the viewpoint of the CT/CGRP/CRSP family even in Euarchontoglires.  相似文献   

17.
Nerve fibers and varicosities in the pelvic paracervical ganglia (PG) are immunoreactive for the neuropeptides calcitonin gene-related peptide, galanin, and the tachykinins substance P and neurokinin A. Many of these fibers and varicosities are capsaicin-sensitive, originate in dorsal root ganglia and, thus, are considered to be primary afferent fibers. Numerous immunoreactive varicosities are pericellular to principal neurons in the PG. The present study examines the ultrastructure of calcitonin gene-related peptide-, galanin-, substance P-, and neurokinin A-immunoreactive nerve fibers and varicosities in the ganglia to determine their relationships to principal neurons and their synaptic connectivity. Paracervical ganglia of female rats were processed for light-microscopic immunohistochemistry using antisera against synapsin I, as a nerve terminal marker, and microtubule-associated protein-2 to define soma and dendrites. The rationale for performing this co-immunohistochemical analysis was to reveal the relationship between nerve endings and principal neurons. Synapsin I endings were predominantly axosomatic with fewer being axodendritic. Other ganglia were processed for electron-microscopic immunohistochemistry using both standard immunogold and peroxidase-anti-peroxidase procedures. Unmyelinated fibers and varicosities immunoreactive for calcitonin gene-related peptide, galanin, and the tachykinins were routinely observed in the interstitium between neuron somas. Numerous immunoreactive axon profiles were present in small groups that were ensheathed by Schwann cells. Immunoreactive fibers and varicosities were also observed within the satellite-cell sheath of the neuron soma and often intimately associated with the membrane of the soma, somal protrusions, or with the proximal part of a dendrite. Membrane specializations, indicative of synaptic contacts, between the fibers and the principal neurons were observed. It is suggested that these peptide-immunoreactive sensory fibers and varicosities are involved in regulation of activity in the PG.  相似文献   

18.
Helodermin-like and salmon calcitonin (sCT)-like immunoreactivities co-existed in a subset of human calcitonin (hCT)-containing cells in normal human thyroid tissue and medullary thyroid carcinomas. Helodermin/sCT-immunoreactive cells were mostly different from calcitonin gene-related peptide (CGRP)-positive cells. Helodermin and sCT immunoreactivities were not identified in pulmonary and pancreatic hCT-positive neuroendocrine tumors, except for a few lung tumor cells showing positive staining with one of two sCT antisera used. Helodermin immunoreactivity demonstrated by rabbit antiserum R0086 was completely abolished in the presence of synthetic sCT, while sCT immunoreactivity was not absorbed by synthetic helodermin. The carboxyl terminal Arg30-Thr31 sequence (and Pro35 amide structure) of helodermin would be the epitopic site recognized by this antiserum, since a similar amino acid sequence is present in sCT molecules but absent from hCT and CGRP.  相似文献   

19.
Summary Substance P and calcitonin gene-related peptide were immunohistochemically identified in axons innervating the cornea and the ureter of adult rats and pigeons. The two neuropeptides were similarly distributed in both species. Capsaicin pretreatment induced depletion of the immunoreactivity; this was quantitatively and qualitatively different in rats and pigeons. Topical application of capsaicin (1%) reduced the immunoreactivity in the cornea in both species by 50%. Systemic capsaicin treatment completely depleted both peptides from the corneal innervation of rats but reduced the peptide content only by 50% in the cornea of pigeons. In the ureter of rats, capsaicin pretreatment completely depleted the peptide immunoreactivity. In pigeons the peptide depletion was only complete in the outer longitudinal muscle layer. Whereas only a few immunoreactive fibres were observed in the circular muscle layer, about 50% of the peptide remained in the inner longitudinal muscle layer. The results demonstrate that peptidergic afferents in the cornea and ureter of pigeons are sensitive to capsaicin, although birds do not show nociceptive responses to local administration of the drug. The long-term depletion of substance P and calcitonin gene-related peptide by capsaicin is discussed with regard to the possibility that functionally capsaicin receptors may exist in the axon but not at nerve endings.Part of the thesis of Gerhard Harti, to be presented to the Fachbereich Biologie, Justus-Liebig-Universität, Giessen  相似文献   

20.
Colocalization of vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, substance P, and tyrosine hydroxylase, respectively, with NADPH-diaphorase staining in rat adrenal gland was investigated using the double labelling technique. All vasoactive intestinal peptide- and some neuropeptide Y-immunoreactive intrinsic neuronal cell bodies seen in the gland were double stained with NADPH-diaphorase. Double labelling also occurred in some nerve fibres immunoreactive to vasoactive intestinal peptide and neuropeptide Y in the medulla and cortex. No colocalization of calcitonin gene-related peptide, substance P or tyrosine hydroxylase immunoreactivity with NADPH-diaphorase staining was observed. However, nerve fibres with varicosities immunoreactive for all the neuropeptides examined were closely associated with some of the NADPH-diaphorase-stained neuronal cell bodies. Thus, in rat adrenal gland, nitric oxide is synthesized in all ganglion cells containing vasoactive intestinal peptide and in some containing neuropeptide Y, but not in those containing calcitonin gene-related peptide, substance P or tyrosine hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号