首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the relationship between the transbilayer distribution of aminophospholipids, such as phosphatidylethanolamine (PE), PE plasmalogen and phosphatidylserine, and the oxidative stability of polyunsaturated fatty acids (PUFAs) in the aminophospholipids. To modulate the transbilayer distribution of aminophospholipid in liposomes, we used phosphatidylcholine (PC) with two types of acyl chain region: dipalmitoyl (PC16:0) or dioleoyl (PC18:1). In the smaller-sized liposomes, the proportions of aminophospholipid in the liposomal external layer were significantly higher in liposomes containing PC18:1 than in those containing PC16:0. Additionally, aminophospholipids in the external layer of smaller-sized liposomes were able to protect their component PUFAs from 2,2'-azobis(2-amidinopropane)dihydrochloride-mediated lipid peroxidation.  相似文献   

2.
The sodium-dependent leucine transport system of Pseudomonas aeruginosa was reconstituted into liposomes of binary lipid mixtures of dilauroylphosphatidylethanolamine (di(12:0)PE)/phosphatidylcholine (PC) with cis-monounsaturated fatty acid chains (di(n:1)PC) (n = 14-22) or dioleoylphosphatidylethanolamine (di(18:1)PE)/di(n:1)PC (n = 14-22). Leucine carrier proteins can be activated with phosphatidylethanolamine, whereas activation does not occur in PC-reconstituted vesicles (Uratani, Y., and Aiyama, A. (1986) J. Biol. Chem. 261, 5450-5454). Na+-dependent counterflow was measured at 30 degrees C as reconstituted transport activity. Proteoliposomes containing di(12:0)PE exhibited high counterflow activity at the PC acyl carbon number (n) of 18 and 20 but no or low activity at n = 14, 16, and 22. On the other hand, proteoliposomes containing di(18:1)PE exhibited higher transport activity than those vesicles with di(12:0)PE and corresponding di(n:1)PC. A lipid mixture of di(18:1)PE and di(16:1)PC supported maximal activity. These results show that the leucine transport system of P. aeruginosa is dependent on the lipid acyl chain length and suggest that there exists optimal bilayer thickness for maximal carrier activity.  相似文献   

3.
The degradation of phospholipids containing polyunsaturated fatty acids, termed peroxidation, poses a constant challenge to membranes lipid composition and function. Phospholipids with saturated (e.g. PC 16:0/16:0) and monounsaturated fatty acids (e.g. PC 16:0/18:1) are some of the most common phospholipids found in membranes and are generally not peroxidisable. The present experiments show that these non-peroxidisable phospholipids, when present in liposomes with peroxidisable phospholipids (i.e. those containing polyunsaturated fatty acids) such as PC 16:0/18:2 and Soy PC, produce an inhibitory effect on rates of peroxidation induced by ferrous-iron. This inhibitory effect acts to extend the duration of the lag phase by several-fold. If present in natural systems, this action could enhance the capacity of conventional antioxidant mechanisms in membranes. The results of this preliminary work suggest that non-peroxidisable phospholipids may exert an antioxidant-like action in membranes.  相似文献   

4.
The effect of lipid peroxidation on membrane structure and phospholipase A2 activity was studied using liposomes composed of bovine liver phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The phospholipids were mixed at set ratios and sonicated to yield small unilamellar vesicles. The liposome preparations were subjected to lipid peroxidation as induced by cumene hydroperoxide and hematin. Under these conditions, a sharp increase in lipid peroxidation was noted over a 30 min incubation period and was accompanied by loss of polyunsaturated fatty acids (PUFA). Liposomes enriched in PE were most extensively peroxidized with a preferred oxidation of this phospholipid. The extent of PC oxidation was also greater in liposomes containing the largest proportions of PE. Analysis of liposome anisotropy, via steady-state fluorescence polarization of diphenylhexatriene indicated that progressive increases in either PE content or the level of lipid peroxidation increased the apparent microviscosity of the vesicles. Moreover, lipid peroxidation increased anisotropy more effectively than variations in the ratios of PE vs. PC. Thus, peroxidation of 5-10% of the phospholipids produced the same anisotropy increase as a 20% increase in the ratio of PE vs. PC. Analysis of vesicle turbidity suggested that fusion was also more readily achieved through lipid peroxidation. When liposomes were incubated with 0.4 U/ml of snake venom phospholipase A2, a direct correlation was found between the degree of lipid peroxidation and the extent of phospholipid hydrolysis. The more unsaturated phospholipid, PE, was most extensively hydrolyzed following peroxidation. Increasing the proportion of PE also resulted in more extensive phospholipid hydrolysis. These findings indicate that lipid peroxidation produces a general increase in membrane viscosity which is associated with vesicle instability and enhanced phospholipase A2 attack. A structural basis for membrane phospholipase A2 activation as a consequence of lipid peroxidation is discussed in light of these findings.  相似文献   

5.
In a patient with lecithin: cholesterol acyltransferase deficiency, free cholesterol was markedly increased, and esterified cholesterol was diminished. In the patient's plasma, an increase in phosphatidylcholine (PC) and a decrease in sphingomyelin were observed. Concomitantly, an increase in a shorter acyl chain 16:0 was noted in PC, sphingomyelin and phosphatidylethanolamine (PE). In contrast to these results, longer chains such as 22:0 and 24:0 were decreased, especially in sphingomyelin. Unsaturated double bonds such as 18:1 was also increased in PC and PE. In the red-cell membrane lipids, the increase in free cholesterol was counteracted by an increase in PC and by a decrease in sphingomyelin and PE, reflecting changes in the patient's plasma lipids. Increased 16:0 (in PC) and decreased 18:0 and 24:0 were observed. The increased plasma free cholesterol due to metabolic defect (lecithin:cholesterol acyltransferase deficiency) led to decreased red-cell membrane fluidity. This effect appeared to be counteracted by changing phospholipid composition (increased PC and decreased sphingomyelin and PE), by increasing shorter chains (16:0), by decreasing longer chains (18:0 and 24:0) and by increasing unsaturated double bonds (18:2). These results can be interpreted as a self-adaptive modification of lecithin:cholesterol acyltransferase deficiency-induced red-cell membrane abnormalities, to maintain normal membrane fluidity. This speculation was supported by the ESR spin-label studies on the patient's membrane lipids. The normal order parameters in intact red cells and in total lipid liposomes were decreased if cholesterol-depleted membrane liposomes were prepared. Thus, the hardening effect of cholesterol appeared to be counteracted by the softening effects described above. Overall membrane fluidity in intact red cells of the lecithin:cholesterol acyltransferase-deficient patient was maintained normally, judged by order parameters in ESR spin-label studies.  相似文献   

6.
The effects of free fatty acids on hemoglobin conversion and lipid peroxidation were studied in hemoglobin-containing liposomes (hemosomes) formed from an equimolar mixture of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). It was shown that in hemosomes oxyhemoglobin is converted into hemichrome by the interaction of saturated fatty acids (arachidic, stearic, palmitic, myristic and lauric). This is accompanied by accumulation of primary and secondary products of lipid peroxidation. All fatty acids, except for lauric acid, have a stabilizing effect on lipid peroxidation in liposomes prepared from an equimolar mixture of PC and PE. The formation of lipid peroxidation products is inhibited by superoxide dismutase, D-alpha-tocopherol, D-mannitol and thiourea. The relationships between hemoglobin conversion and lipid peroxidation in hemosomes under effects of fatty acids were studied. The mechanisms of these reactions are discussed.  相似文献   

7.
Altered membrane integrity in hepatocellular carcinoma (HCC) tissue was indicated by an elevation in cholesterol and significant decrease in phosphatidylcholine (PC). The resultant decreased phosphatidylcholine/phosphatidylethanolamine (PC/PE) and increased cholesterol/phospholipid ratios are associated with decreased fluidity in the carcinoma tissue. The lower PC was associated with a decrease in the quantitative levels of the saturated (C16:0, C18:0), ω6 (C18:2, C20:4) and ω3 (C22:5, C22:6) fatty acids (FAs), resulting in reduced long-chain polyunsaturated fatty acids (LCPUFAs), total PUFA and an increase in ω6/ω3 FA ratio. In PE, the saturated and ω3 (C22:5, C22:6) FAs were reduced while the total ω6 FA level was not affected, leading to an increased ω6/ω3 FA ratio. Increased levels of C18:1ω9, C20:2ω6 and reduction of 22:6ω3 in PC and PE suggest a dysfunctional delta-6 desaturase. The reduced PC/PE ratio resulted in a decreased C20:4ω6 (PC/PE) ratio, implying a shift towards synthesis of the 2-series eicosanoids. Lipid peroxidation was reduced in both hepatitis B negative (HBV) and positive (HBV+) HCC tissues. Glutathione (GSH) was decreased in HCC while HBV had no effect, suggesting an impairment of the GSH redox cycle. In contrast HBV infection enhanced GSH in the surrounding tissue possibly to counter oxidative stress as indicated by the increased level of conjugated dienes. Apart from the reduced LCPUFA, the low level of lipid peroxidation in the carcinoma tissue was associated with increased superoxide dismutase and glutathione peroxidase activity. The disruption of the redox balance, resulting in increased cellular antioxidant capacity, could create an environment for resistance to oxidative stress in the carcinoma tissue. Alterations in membrane cholesterol, phospholipids, FA parameters, C20:4ω6 membrane distribution and low lipid peroxidation are likely to be important determinants underlying the selective growth advantage of HCC cells.  相似文献   

8.
The relationship between lipid peroxidation and phospholipase A2 (PLA2) hydrolytic activity was studied using unilamellar vesicles (liposomes) as model membranes. Hydrolytic specificity was examined using vesicles prepared with pure bovine heart phosphatidylcholine (PC), bovine heart phosphatidylethanolamine (PE), or mixtures of these phospholipids, using two preparative procedures, i.e., sonication or extrusion. Lipid peroxidation was induced by incubating vesicles with cumene hydroperoxide and hematin at 37 degrees C. Determinations of the extent of peroxidation by means of diene conjugate content derived from second derivative spectra or by polarographic measurement of oxygen consumption rates provided a basis for comparing the extent of peroxidation of each phospholipid species to their subsequent hydrolysis by PLA2 (from Crotalus adamanteus). The extent of hydrolysis was determined through the release of arachidonic acid from either PC or PE. The PE distribution among the outer vs. inner leaflet of the membrane bilayer was nearly equal in sonicated vesicles, whereas most of the phospholipid was incorporated into the inner leaflet in extruded vesicles. The proportion of PE found in the inner leaflet progressively increased as the ratio of PE to PC increased in both sonicated and extruded vesicle preparations. Lipid peroxidation had no effect on PE distribution under the conditions examined. There was a clear preference for PC peroxidation for all vesicle compositions tested and PC was preferentially hydrolyzed by PLA2. This effect is proposed to result from a perturbation of membrane structure following peroxidation with assimilation of PC into PLA2-susceptible domains whereas PE peroxidation and hydrolysis is less affected in mixed PC/PE vesicles. Lipid peroxidation imposes an additional hydrolytic susceptibility over the effects exerted through the mixing of these phospholipids which is based on structural changes rather than formation of specific substrates for PLA2.  相似文献   

9.
Peroxidation is a well-known natural phenomenon associated with both health and disease. We compared the peroxidation kinetics of phosphatidylcholine (PC) molecules with different fatty acid compositions (i.e. 18:0, 18:1n-9, 18:2n-6, 20:4n-6 and 22:6n-3 at the sn-2 and 16:0 at sn-1 position) either as molecules free in solution or formed into liposomes. Fatty acid levels, oxygen consumption plus lipid hydroperoxide and malondialdehyde production were measured from the same incubations, at the same time during maximal elicitable peroxidation. PCs with highly peroxidizable fatty acids (i.e. 20:4n-6 and 22:6n-3) in the same incubation were found to be either fully peroxidized or intact. Rates of peroxidation of PCs with multiple bisallylic groups (i.e. 20:4n-6 and 22:6n-3) peroxidized at 2-3 times the rate per bisallylic bond than the same phospholipid with 18:2n-6. The results suggest that propagation of peroxidation (H-atom transfer) is firstly an intramolecular process that is several-fold faster than intermolecular peroxidation. PCs in solution peroxidized twice as fast as those in liposomes suggesting that only half of the phospholipids in liposomes were available to peroxidize i.e. the outer leaflet. Experiments on liposomes suggest that even after heavy peroxidation of the outer leaflet the inner leaflet is unaffected, indicating how cells may protect themselves from external peroxidation and maintain control over internal peroxidation. Intramolecular peroxidation may produce highly concentrated, localized sites of peroxidation product that together with internal control of peroxidation of the inner leaflet of membranes provide new insights into how cells control peroxidation at the membrane level.  相似文献   

10.
Using liposomes composed of either brain phosphatidylcholine (PC), or binary mixtures of PC and phosphatidylserine (PS), galactolipids (GL), phosphatidylinositol (PI), cardiolipin (CL), phosphatidic acid (PA), or phosphatidylethanolamine (PE), we investigated the effects of graded amounts of boric acid (B, 0.5-1000 microM) on the following membrane physical properties: (a) surface potential, (b) lipid rearrangement through lateral phase separation, (c) fluidity, and (d) hydration. Incubation of the different populations of vesicles with B was associated with a small, but statistically significant, increase in membrane surface potential in PC, PC:PS, PC:GL, PC:PI, PC:PA, and PC:PE liposomes. B-induced lipid lateral rearrangement through lateral phase separation in PC, PC:PA, and PC:PE liposomes; but had no effects on PC:PS, PC:GL, and PC:PI liposomes. In PC liposomes B affected membrane fluidity at the water-lipid interface without affecting the hydrophobic core of the bilayer. In all the other binary liposomes studied, B increased membrane fluidity in both, the hydrophobic portion of the membrane and in the anionic domains. The above was associated with a decrease in the fluidity of the cationic domains. B (10-1000 microM) decreased membrane hydration regardless the composition of the liposomes. The obtained results demonstrate the ability of B to interact with membranes, and induce changes in membrane physical properties. Importantly, the extent of B-membrane interactions and the consequent effects were dependent on the nature of the lipid molecule; as such, B had greater affinity with lipids containing polyhydroxylated moieties such as GL and PI. These differential interactions may result in different B-induced modulations of membrane-associated processes in cells.  相似文献   

11.
MALDI imaging mass spectrometry (IMS) was used to characterize lipid species within sections of human eyes. Common phospholipids that are abundant in most tissues were not highly localized and observed throughout the accessory tissue, optic nerve, and retina. Triacylglycerols were highly localized in accessory tissue, whereas sulfatide and plasmalogen glycerophosphoethanolamine (PE) lipids with a monounsaturated fatty acid were found enriched in the optic nerve. Additionally, several lipids were associated solely with the inner retina, photoreceptors, or retinal pigment epithelium (RPE); a plasmalogen PE lipid containing DHA (22:6), PE(P-18:0/22:6), was present exclusively in the inner retina, and DHA-containing glycerophosphatidylcholine (PC) and PE lipids were found solely in photoreceptors. PC lipids containing very long chain (VLC)-PUFAs were detected in photoreceptors despite their low abundance in the retina. Ceramide lipids and the bis-retinoid, N-retinylidene-N-retinylethanolamine, was tentatively identified and found only in the RPE. This MALDI IMS study readily revealed the location of many lipids that have been associated with degenerative retinal diseases. Complex lipid localization within retinal tissue provides a global view of lipid organization and initial evidence for specific functions in localized regions, offering opportunities to assess their significance in retinal diseases, such as macular degeneration, where lipids have been implicated in the disease process.  相似文献   

12.
Although sphingomyelin (SPH) is a major constituent of all lipoproteins, its physiological function in plasma is not known. In this study, we tested the hypothesis that SPH inhibits lipid peroxidation in low density lipoproteins (LDL) because of its effects on surface fluidity and packing density and that the relative resistance of the buoyant LDL to oxidation, compared with the dense LDL, is partly due to their higher SPH content. Depletion of SPH by treatment with SPHase resulted in shortened lag times and increased rates of oxidation in both LDL subfractions, as measured by the conjugated diene formation in the presence of Cu(2+). Oxidation of LDL by soybean lipoxygenase was similarly stimulated by the degradation of SPH. Oxidation-induced fluorescence decay of diphenylhexatriene-labeled phosphatidylcholine (PC), equilibrated with LDL-PC, was accelerated significantly by the enzymatic depletion of SPH from the lipoprotein. Oxidation of 16:0-18:2 PC in the proteoliposomes was inhibited progressively by the incorporation of increasing amounts of egg SPH into the liposomes. Treatment of SPH-containing proteoliposomes with SPHase reversed the effect of SPH, showing that the presence of intact SPH is necessary for the inhibition of oxidation. Although the incorporation of SPH into the same liposome as the PC (intrinsic SPH) protected the PC against oxidation, the addition of SPH liposomes to PC liposomes (extrinsic SPH) was not effective. Oxidation of 16:0-18:2 PC in liposomes was also inhibited by the incorporation of dipalmitoyl-PC, but not by free cholesterol. These results suggest that SPH acts as a physiological inhibitor of lipoprotein oxidation, possibly by modifying the fluidity of the phospholipid monolayer and thereby inhibiting the lateral propagation of the lipid peroxy radicals.  相似文献   

13.
Sargis RM  Subbaiah PV 《Biochemistry》2003,42(39):11533-11543
Epidemiological data suggest that dietary trans unsaturated fatty acids increase the risk of heart disease; however, the underlying mechanisms are unclear. In this study, we investigated one possible mechanism, namely, their effect on LDL oxidation. Supplementation of LDL with 10% 16:1 trans-cholesteryl ester (CE) inhibited the oxidation compared to that with 16:1 cis-CE. Total replacement of core lipids with 18:2 trans,trans-CE decreased the rate of LDL oxidation by 19% compared to replacement with 18:2 cis,cis-CE. When the surface phosphoglycerides were replaced with either 16:0-18:2 cis,cis-phosphatidylcholine (PC) or 16:0-18:2 trans,trans-PC, the latter was found to inhibit the rate and increase the lag time of oxidation to a greater extent than the former. To confirm these findings, we studied the oxidation of PC liposomes by assessing the formation of conjugated dienes or the degradation of a fluorescently labeled PC. By both methods, the 16:0-18:2 trans,trans-PC exhibited greater resistance to oxidation than the 16:0-18:2 cis,cis-PC. Eliminating the fluidity differences did not completely eliminate the differences in oxidation rates, suggesting that the trans double bond is inherently resistant to oxidation. The composition of the conjugated hydroperoxy products formed after oxidation differed markedly for the two 18:2 isomers. Supplementation of 16:0-18:2 cis,cis-PC liposomes with 20 mol % di16:1 trans-PC retarded oxidation rates to a greater extent than supplementation with di16:1 cis-PC. These studies show that dietary trans unsaturated fatty acids decrease the rate of lipid peroxidation, an effect that may mitigate the atherogenic effect of these fatty acids.  相似文献   

14.
Testis maturation, germ cell development and function of sperm, are related to lipid composition. Phosphatidylcholines (PCs) play a key role in the structure and function of testes. As well, increases of polyunsaturated fatty acids (PUFA) and highly unsaturated fatty acids (HUFA), especially arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are essential for male fertility. This study is the first report to show the composition and distribution of PCs and total fatty acids (FAs) in three groups of seminiferous tubules (STs) classified by cellular associations [i.e., A (STs with mostly early germ cells), B (STs with mostly spermatids), and C (STs with spermatozoa)], in three morphotypes of Macrobrachium rosenbergii, [i.e., small male (SM), orange claw male (OC), and blue claw male (BC)]. Thin layer chromatography exhibited levels of PCs reaching maxima in STs of group B. Imaging mass spectrometry showed remarkably high signals corresponding to PC (16:0/18:1), PC (18:0/18:2), PC (18:2/20:5), and PC (16:0/22:6) in STs of groups A and B. Moreover, most signals were detected in the early developing cells and the intertubular area, but not at the area containing spermatozoa. Finally, gas chromatography-mass spectrometry indicated that the major FAs present in the testes were composed of 14:0, 16:0, 17:0, 18:0, 16:1, 18:1, 18:2, 20:1, 20:2, 20:4, 20:5, and 22:6. The testes of OC contained the greatest amounts of these FAs while the testes of BC contained the least amounts of these FAs, and there was more EPA (20:5) in the testes of SM and OC than those in the BC. The increasing amounts of FAs in the SM and OC indicate that they are important for spermatogenesis and spermiogenesis. This knowledge will be useful in formulating diets containing PUFA and HUFA for prawn broodstocks in order to improve testis development, and lead to increased male fecundity.  相似文献   

15.
Diffusion-controlled water permeation across bilayers of polyunsaturated phospholipids was measured by 17O nuclear magnetic resonance. In 100-nm extruded liposomes containing 50 mM MnCl2, water exchange between internal and external solutions was monitored via changes in the linewidth of the 17O water resonance of external water. Liposome size and shape were characterized by light scattering methods and determination of liposome trapped volume. At 25 degrees C, the following water permeability coefficients were determined: 18:0-18:1n-9 PC, 155 +/- 24 microns/s; 18:0-18:3n-3 PC, 330 +/- 88 microns/s; and 18:0-22:6n-3 PC, 412 +/- 91 microns/s. The addition of 1 M ethanol reduced permeability coefficients to 66 +/- 15 microns/s for 18:0-18:1n-9 PC and to 239 +/- 67 microns/s for 18:0-22:6n-3 PC. Furthermore, the addition of 50 mol% 18:1n-9-18:1n-9 PE reduced the water permeability from 122 +/- 21 microns/s for pure 18:1n-9-18:1n-9 PC to 74 +/- 15 microns/s for the mixture. The significant increase in water permeation for membranes with polyunsaturated hydrocarbon chains correlates with looser packing of polyunsaturated lipids at the lipid-water interface and the suggested deeper penetration of water into these bilayers. Ethanol may block water diffusion pathways by occupying points of water entry into bilayers at the interface. The addition of dioleoylphosphatidylethanolamine increases lipid packing density and, consequently, reduces permeation rates.  相似文献   

16.
This work presents a comparative study of proton transfer activity (PTA) of two cationic (+6) antimicrobial peptides, β‐structural arenicin‐2 and α‐helical melittin. A new approach was proposed for the detection of passive proton transfer by using proteoliposomes containing bacteriorhodopsin, which creates a small light‐induced electrochemical proton gradient ?ΔpH. Addition of several nanomoles of the peptides lowers ?ΔpH that is proximately indicative of the pore formation. The quantitative analysis of sigmoidal dependences of ?pH on the peptides concentration was carried out using liposomes prepared from PC, PC/PE, PC/PE/PI and PC/PG. Substitution of PC‐containing liposomes with PE‐containing ones, having negative spontaneous curvature, reduced the PTA of α‐helical melittin and increased that of β‐structural arenicin‐2. This result indicates an essential difference in the pore formation by these peptides. Further increase of PTA in response to arenicin‐2 (in contrast to melittin) was observed in the liposomes prepared from PC/PE/PI. The data analysis leads to the conclusion that PTA is influenced by (i) efficiency of the pore assemblage, which depends on the structure of pore‐forming peptides, and the spontaneous curvature of lipids and (ii) the presence of mobile protons in the polar head groups of phospholipids. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Niu SL  Litman BJ 《Biophysical journal》2002,83(6):3408-3415
Lateral domain or raft formation in biological membranes is often discussed in terms of cholesterol-lipid interactions. Preferential interactions of cholesterol with lipids, varying in headgroup and acyl chain unsaturation, were studied by measuring the partition coefficient for cholesterol in unilamellar vesicles. A novel vesicle-cyclodextrin system was used, which precludes the possibility of cross-contamination between donor-acceptor vesicles or the need to modify one of the vesicle populations. Variation in phospholipid headgroup resulted in cholesterol partitioning in the order of sphingomyelin (SM) > phosphatidylserine > phosphatidylcholine (PC) > phosphatidylenthanolamine (PE), spanning a range of partition DeltaG of -1181 cal/mol to +683 cal/mol for SM and PE, respectively. Among the acyl chains examined, the order of cholesterol partitioning was 18:0(stearic acid),18:1n-9(oleic acid) PC > di18:1n-9PC > di18:1n-12(petroselenic acid) PC > di18:2n-6(linoleic acid) PC > 16:0(palmitic acid),22:6n-3(DHA) PC > di18:3n-3(alpha-linolenic acid) PC > di22:6n-3PC with a range in partition DeltaG of 913 cal/mol. Our results suggest that the large differences observed in cholesterol-lipid interactions contribute to the forces responsible for lateral domain formation in plasma membranes. These differences may also be responsible for the heterogeneous cholesterol distribution in cellular membranes, where cholesterol is highly enriched in plasma membranes and relatively depleted in intracellular membranes.  相似文献   

18.
The fusion behavior of large unilamellar liposomes composed of N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium (DOTMA) and either phosphatidylcholine (PC) or phosphatidylethanolamine (PE) has been investigated by a fluorescence resonance energy transfer assay for lipid mixing, dynamic light scattering, and electron microscopy. Polyvalent anions induced the fusion of DOTMA/PE (1:1) liposomes with the following sequence of effectiveness: citrate greater than EDTA greater than phosphate, in the presence 100 mM NaCl, pH 7.4. Sulfate, dipicolinate, and acetate were ineffective. DOTMA/PC (1:1) vesicles were completely refractory to fusion in the presence of multivalent anions in the concentration range studied, consistent with the inhibitory effect of PC in divalent cation induced fusion of negatively charged vesicles. DOTMA/PE vesicles could fuse with DOTMA/PC vesicles in the presence of high concentrations of citrate, but not of phosphate. Mixing of DOTMA/PE liposomes with negatively charged phosphatidylserine (PS)/PE or PS/PC (1:1) vesicles resulted in membrane fusion in the absence of multivalent anions. DOTMA/PC liposomes also fused with PS/PE liposomes and, to a limited extent, with PS/PC liposomes. These observations suggest that the interaction of the negatively charged PS polar group with the positively charged trimethylammonium of DOTMA is sufficient to mediate fusion between the two membranes containing these lipids and that the nature of the zwitterionic phospholipid component of these vesicles is an additional determinant of membrane fusion.  相似文献   

19.
In this study, small liposomes obtained by high-pressure homogenization were fractionated according to their particle sizes by size exclusion chromatography (SEC). The subfractions were analyzed by photon correlation spectroscopy (PCS) as well as enzymatic phosphatidylcholine (PC) assay for their particle sizes and lipid contents, respectively. For small egg PC-liposomes, a size range of 15 nm to 60 nm was found, with 80% of the vesicles being smaller than 30 nm in size. This is in contradiction to a mean size of 85±32 nm as indicated by PCS without fractionation. The PCS technique appears to underestimate very small particles below 30 nm if (few) bigger particles are present. The PCS particle size analysis of unfractionated hydrogenated egg PC/cholesterol-liposomes (2:1, mole/mole) by PCS did not yield any significant results. On fractionation, however, a particle size range of 40 nm to 120 nm was determined in a reproducible manner. Our results indicate that the combination of size exclusion fractionation with subsequent photon correlation spectroscopic particle size analysis and enzymatic PC assay can give both more detailed and more reliable insight into the particle size distribution of small liposomes than PCS alone. Published: May 15, 2002.  相似文献   

20.
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of the myelin membrane exhibit heterogeneity with respect to metabolic turnover rate (Miller, S. L., Benjamins, J. A., and Morell, P. (1977) J. Biol. Chem. 252, 4025-4037). To test the hypothesis that this is due to differential turnover of individual molecular species (which differ in acyl chain composition), we have examined the relative turnover of individual molecular species of myelin PC and PE. Phospholipids were labeled by injection of [2-3H]glycerol into the brains of young rats. Myelin was isolated at 1, 15, and 30 days post-injection, lipids were extracted, and phospholipid classes were separated by thin-layer chromatography. The PC and PE fractions were hydrolyzed with phospholipase C, and the resulting diacylglycerols were dinitrobenzoylated and fractionated by reverse-phase high performance liquid chromatography. The distribution of radioactivity among individual molecular species was determined. The labeled molecular species of myelin PC were 16:0-16:0, 16:0-18:0, 16:0-18:1, and 18:0-18:1, with most of the label present in 16:0-18:1 and 18:0-18:1. Changes in distribution of label with time after injection indicated that 16:0-18:1 turned over more rapidly than 18:0-18:1. The labeled molecular species of myelin PE were 18:0-20:4, 18:1-18:1, 16:0-18:1, 18:0-18:2, and 18:0-18:1. As with myelin PC, 16:0-18:1 (and 18:1-18:1) turned over more rapidly than 18:0-18:1. The relative turnover of individual molecular species of PC in the microsomal fraction from forebrain was also examined. The molecular species profile was different from myelin PC, but again, 16:0-18:1 turned over more rapidly than the other molecular species. Thus, within the same membrane, individual molecular species of a phospholipid class are metabolized at different rates. Comparison of our results with previous studies of turnover of molecular classes of phospholipids indicates that in addition to polar head group composition (Miller et al., 1977), fatty acid composition is very important in determining the metabolic fate of a phospholipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号