首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Hepadnavirus replication requires the concerted action of the polymerase and core proteins to ensure packaging of the RNA pregenome and DNA maturation. The arginine-rich C terminus of the core protein plays an essential role in both of these steps while being dispensable for nucleocapsid formation. In an attempt to identify other functional domains of the core protein, we performed a series of trans-complementation experiments analyzing the ability of duck and human hepatitis B virus (DHBV and HBV) core protein subunits to support the replication of a core-defective DHBV genome. Plasmids expressing the N-terminal amino acids 1 to 67 or the remaining C-terminal portion, amino acids 67 to 262, of the DHBV core protein were cotransfected into LMH cells along with a replication-deficient construct coding for the DHBV pregenome and polymerase. Neither the N nor the C terminus alone yielded replication-competent core particles. However, cotransfection of plasmids that separately expressed both regions restored a normal replication pattern. Furthermore, the DHBV C terminus but not the N terminus could be replaced by the corresponding domain of the HBV core protein in this assay. Finally, coexpression of the complete HBV core protein and the N terminus from DHBV resulted in DHBV replication, while the HBV core protein alone was not functional. Taken together, these findings suggest a modular organization of the DHBV core protein in which the C terminus is functionally conserved among different hepadnaviruses.  相似文献   

2.
Adenovirus E1A transforming function requires two distinct regions of the protein. Transforming activity is closely linked with the presence of a region designated conserved domain 2 and the ability of this region to bind the product of the cellular retinoblastoma tumor suppressor gene. We have investigated the biological properties of the second transforming region of E1A, which is located near the N terminus. Transformation-defective mutants containing deletions in the N terminus (deletion of residues between amino acids 2 and 36) were deficient in the ability to induce DNA synthesis and repress insulin enhancer-stimulated activity. The function of the N-terminal region correlated closely with binding of the 300-kilodalton E1A-associated protein and not with binding of the retinoblastoma protein. These results indicate that transformation by E1A is mediated by two functionally independent regions of the protein which interact with different specific cellular proteins and suggest that the 300-kilodalton E1A-associated protein plays a major role in E1A-mediated cell growth control mechanisms.  相似文献   

3.
Previous work has demonstrated the expression of the cloned pilin gene of Pseudomonas aeruginosa PAK within Escherichia coli and has pinpointed this protein's localization exclusively to the cytoplasmic membrane (Finlay et al., 1986). To define regions of the pilin subunit necessary for its stability and transport within E. coli, we constructed six mutants of the pilin gene and studied their expression and localization using a T7 promoter system. Two of the mutants have either a 4- or 8-amino-acid deletion at the N-terminus and both were stably expressed and transported primarily to the cytoplasmic membrane of E. coli. The other four mutants are C-terminal truncations having between 36 and 56 amino acids of the N-terminal region of the unprocessed pilin. Studies with these truncated mutants revealed that only the first 36 residues of the unprocessed pilin subunit were required for insertion into the E. coli membrane.  相似文献   

4.
Violaxanthin de-epoxidase (VDE) is localized in the thylakoid lumen and catalyzes the de-epoxidation of violaxanthin to form antheraxanthin and zeaxanthin. VDE is predicted to be a lipocalin protein with a central barrel structure flanked by a cysteine-rich N-terminal domain and a glutamate-rich C-terminal domain. A full-length Arabidopsis thaliana (L.) Heynh. VDE and deletion mutants of the N- and C-terminal regions were expressed in Escherichia coli and tobacco (Nicotiana tabacum L. cv. Xanthi) plants. High expression of VDE in E. coli was achieved after adding the argU gene that encodes the E. coli arginine AGA tRNA. However, the specific activity of VDE expressed in E. coli was low, possibly due to incorrect folding. Removal of just 4 amino acids from the N-terminal region abolished all VDE activity whereas 71 C-terminal amino acids could be removed without affecting activity. The difficulties with expression in E. coli were overcome by expressing the Arabidopsis VDE in tobacco. The transformed tobacco exhibited a 13- to 19-fold increase in VDE specific activity, indicating correct protein folding. These plants also demonstrated an increase in the initial rate of nonphotochemical quenching consistent with an increased initial rate of de-epoxidation. Deletion mutations of the C-terminal region suggest that this region is important for binding of VDE to the thylakoid membrane. Accordingly, in vitro lipid-micelle binding experiments identified a region of 12 amino acids that is potentially part of a membrane-binding domain. The transformed tobacco plants are the first reported example of plants with an increased level of VDE activity.  相似文献   

5.
Canine parvovirus capsids are composed of 60 copies of VP2 and 6 to 10 copies of VPl. To locate essential sites of interaction between VP2 monomers, we have analyzed the effects of a number of VP2 deletion mutants representing the amino terminus and the four major loops of the surface, using as an assay the formation of virus-like particles (VLPs) expressed by recombinant baculoviruses. For the amino terminus we constructed three mutants with progressively larger deletions, i.e., 9, 14, and 24 amino acids. Deletions of 9 and 14 amino acids did not affect the morphology and assembly capabilities of the mutants. However, the mutant with the 24-amino-acid deletion did not show hemagglutination properties or correct VLP morphology, stressing again the relevance of the RNER domain in canine parvovirus functionality. Three of the four mutants with deletions in the loops failed to make correct VLPs, indicating that these regions are essential for correct capsid assembly and morphology. Only the mutant with the deletion in loop 2 was able to assemble in regular VLPs, suggesting that this loop has little or no effect in capsid morphogenesis. Further research has demonstrated that this region can tolerate the insertion of foreign epitopes that are correctly exposed in the surface of the capsid. This result opens the door to the use of these VLPs for antigen delivery.  相似文献   

6.
Tc1 is a transposon present in several copies in the genome of all natural isolates of the nematode C.elegans; it is actively transposing in many strains. In those strains Tc1 insertion is the main cause of spontaneous mutations. The transposon contains one large ORF that we call TcA; we assume that the TcA protein is the transposase of Tc1. We expressed TcA in E.coli, purified the protein and showed that it has a strong affinity for DNA (both single stranded and double stranded). A fusion protein of beta-galactosidase and TcA also exhibits DNA binding; deletion derivatives of this fusion protein were tested for DNA binding. A deletion of 39 amino acids at the N-terminal region of TcA abolishes the DNA binding, whereas a deletion of 108 C-terminal amino acids does not affect DNA binding. This shows that the DNA binding domain of TcA is near the N-terminal region. The DNA binding capacity of TcA supports the assumption that TcA is a transposase of Tc1.  相似文献   

7.
Herpes simplex virus type 1 (HSV-1) capsids have an icosahedral structure with capsomers formed by the major capsid protein, VP5, linked in groups of three by distinctive structures called triplexes. Triplexes are heterotrimers formed by two proteins in a 1:2 stoichiometry. The single-copy protein is called VP19C, and the dimeric protein is VP23. We have carried out insertional and deletional mutagenesis on VP19C and have examined the effects of the mutations on virus growth and capsid assembly. Insertional mutagenesis showed that the N-terminal approximately 100 amino acids of the protein, which correspond to a region that is poorly conserved among herpesviruses, are insensitive to disruption and that insertions into the rest of the protein had various effects on virus growth. Some, but not all, severely disabled mutants were compromised in the ability to bind VP23 or VP5. Analysis of deletion mutants revealed the presence of a nuclear localization signal (NLS) near the N terminus of VP19C, and this was mapped to a 33-amino-acid region by fusion of specific sequences to a green fluorescent protein marker. By replacing the endogenous NLS with that from the simian virus 40 large T antigen, we were able to show that the first 45 amino acids of VP19C were not essential for assembly of functional capsids and infectious virus particles. However, removing the first 63 amino acids resulted in formation of aberrant capsids and prevented virus growth, suggesting that the poorly conserved N-terminal sequences have some as-yet-unidentified function.  相似文献   

8.
To study the relationship between the primary structure of the c-myc protein and some of its functional properties, we made in-frame insertion and deletion mutants of the normal human c-myc coding domain that was expressed from a retroviral promoter-enhancer. We assessed the effects of these mutations on the ability of c-myc protein to cotransform normal rat embryo cells with a mutant ras gene, induce foci in a Rat-1-derived cell line (Rat-1a), and localize in nuclei. Using the cotransformation assay, we found two regions of the protein (amino acids 105 to 143 and 321 to 439) where integrity was critical: one region (amino acids 1 to 104) that tolerated insertion and small deletion mutations, but not large deletions, and another region (amino acids 144) to 320) that was largely dispensable. Comparison with regions that were important for transformation of Rat-1a cells revealed that some are essential for both activities, but others are important for only one or the other, suggesting that the two assays require different properties of the c-myc protein. Deletion of each of three regions of the c-myc protein (amino acids 106 to 143, 320 to 368, and 370 to 412) resulted in partial cytoplasmic localization, as determined by immunofluorescence or immunoprecipitation following subcellular fractionation. Some abnormally located proteins retained transforming activity; most proteins lacking transforming activity appeared to be normally located.  相似文献   

9.
Assembly intermediates of icosahedral viruses are usually transient and are difficult to identify. In the present investigation, site-specific and deletion mutants of the coat protein gene of physalis mottle tymovirus (PhMV) were used to delineate the role of specific amino acid residues in the assembly of the virus and to identify intermediates in this process. N-terminal 30, 34, 35 and 39 amino acid deletion and single C-terminal (N188) deletion mutant proteins of PhMV were expressed in Escherichia coli. Site-specific mutants H69A, C75A, W96A, D144N, D144N-T151A, K143E and N188A were also constructed and expressed. The mutant protein lacking 30 amino acid residues from the N terminus self-assembled to T=3 particles in vivo while deletions of 34, 35 and 39 amino acid residues resulted in the mutant proteins that were insoluble. Interestingly, the coat protein (pR PhCP) expressed using pRSET B vector with an additional 41 amino acid residues at the N terminus also assembled into T=3 particles that were more compact and had a smaller diameter. These results demonstrate that the amino-terminal segment is flexible and either the deletion or addition of amino acid residues at the N terminus does not affect T=3 capsid assembly. In contrast, the deletion of even a single residue from the C terminus (PhN188Delta1) resulted in capsids that were unstable. These capsids disassembled to a discrete intermediate with a sedimentation coefficent of 19.4 S. However, the replacement of C-terminal asparagine 188 by alanine led to the formation of stable capsids. The C75A and D144N mutant proteins also assembled into capsids that were as stable as the pR PhCP, suggesting that C75 and D144 are not crucial for the T=3 capsid assembly. pR PhW96A and pR PhD144N-T151A mutant proteins failed to form capsids and were present as heterogeneous aggregates. Interestingly, the pR PhK143E mutant protein behaved in a manner similar to the C-terminal deletion protein in forming unstable capsids. The intermediate with an s value of 19.4 S was the major assembly product of pR PhH69A mutant protein and could correspond to a 30mer. It is possible that the assembly or disassembly is arrested at a similar stage in pR PhN188Delta1, pR PhH69A and pR PhK143E mutant proteins.  相似文献   

10.
11.
P Whyte  H E Ruley    E Harlow 《Journal of virology》1988,62(1):257-265
Regions of the adenovirus type 5 early region 1A (E1A) proteins that are required for transformation were defined by using a series of deletion mutants. Deletion mutations collectively spanning the entire protein-coding region of E1A were constructed and assayed for their ability to cooperate with an activated ras oncogene to induce transformation in primary baby rat kidney cells. Two regions of E1A (amino acids 1 to 85 and 121 to 127) were found to be essential for transformation. Deletion of all or part of the region from amino acids 121 to 127 resulted in a total loss of transforming ability. An adjacent stretch of amino acids (residues 128 to 139), largely consisting of acidic residues, was found to be dispensable for transformation but appeared to influence the efficiency of transformation. Amino acids 1 to 85 made up a second region of the E1A protein that was essential for transformation. Deletion of all or part of this region resulted in a loss of the transforming activity. Even a mutation resulting in a single amino acid change at position 2 of the polypeptide chain was sufficient to eliminate transformation. Deletion of amino acids 86 to 120 or 128 to 289 did not eliminate transformation, although some mutations in these regions had lowered efficiencies of transformation. Foci induced by transformation-competent mutants could be expanded into cell lines that retained their transformed morphology and constitutively expressed the mutant E1A proteins.  相似文献   

12.
13.
We have constructed mutants by using linker insertion followed by deletion in the region of cloned Rous sarcoma virus DNA coding for the N-terminal 9 kilodaltons of the src protein. Previous work implicated this region in the membrane association of the protein. The mutations had little effect on src tyrosine kinase activity. Substitution of a tri- or tetrapeptide for amino acids 15 to 27, 15 to 49, or 15 to 81 had little effect on the in vitro transforming capacity of the virus. Like wild-type p60src, the src proteins of these mutants associated with plasma membranes and were labeled with [3H]myristic acid. In contrast, a mutant whose src protein had the dipeptide Asp-Leu substituted for amino acids 2 to 81 and a mutant with the tripeptide Asp-Leu-Gly substituted for amino acids 2 to 15 were transformation defective, and the mutant proteins did not associate with membranes and were not labeled with [3H]myristic acid. These results suggest that amino acids 2 to 15 serve as an attachment site for myristic acid and as a membrane anchor. Since deletions including this region prevent transformation, and since tyrosine kinase activity is not diminished by the deletions, these results imply that target recognition is impaired by mutations altering the very N terminus, perhaps through their effect on membrane association.  相似文献   

14.
An expression vector was designed to test the structural requirements of the gp41 N terminus for human immunodeficiency virus type 1-induced membrane fusion. Mutations in the region coding for the N terminus of gp41 were found to disrupt glycoprotein expression because of deleterious effects on the Rev-responsive element (RRE). Insertion of an additional RRE in the 3'-noncoding sequence of env made possible efficient glycoprotein expression, irrespective of the mutations introduced into the RRE in the natural location. This permitted the insertion of the unique restriction site SpeI within the N-terminal sequences of gp41, allowing convenient and efficient mutation of the gp41 N terminus by using double-stranded synthetic oligonucleotides. Mutants with deletions of 1 to 7 amino acids of the N terminus were constructed. Expression and cleavage of all mutants were confirmed by Western immunoblot analysis with anti-gp41 antibodies. The capability of mutants to induce membrane fusion was monitored following transfection of HeLa-T4+ cell lines with wild-type and mutant expression vectors by electroporation and microinjection. The efficiency of cell-fusing activity decreased drastically with deletion of 3 and 4 amino acids and was completely lost with deletion of 5 amino acids. Cotransfection of the parent and mutant expression vectors resulted in reduced cell-fusing activity. The extent of this dominant interference by mutant glycoprotein paralleled the decrease in cell-fusing activity of the mutants alone. This suggests the existence of a specific N-terminal structure required for fusing activity. However, there does not appear to be a stringent requirement for the precise length of the N terminus. This finding is supported by the length variation of this region among natural human immunodeficiency virus type 1 isolates and is in contrast to the apparent stringency in the length of analogous N-terminal structures of influenza A virus and paramyxovirus fusion glycoproteins.  相似文献   

15.
16.
17.
PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-gamma, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence.  相似文献   

18.
A hybrid assay, based on the properties of the lambda repressor, was developed to detect FtsZ dimerization in Escherichia coli in vivo. A gene fusion comprising the N-terminal end of the lambda cI repressor gene and the complete E. coli ftsZ gene was constructed. The fused protein resulted in a functional lambda repressor and was able to complement the thermosensitive mutant ftsZ84. Using the same strategy, a series of 10 novel mutants of FtsZ that are unable to dimerize was selected, and a deletion analysis of the protein was carried out. Characterization of these mutants allowed the identification of three separate FtsZ portions: the N-terminal of about 150 amino acids; the C-terminal of about 60 amino acids, which corresponds to the less conserved portion of the protein; and a central region of about 150 residues. Mutants belonging to this region would define the dimerization domain of FtsZ.  相似文献   

19.
An in vitro assembly system was developed to study prolate capsid assembly of phage ?29 biochemically, and to identify regions of scaffolding protein required for its functions. The crowding agent polyethylene glycol can induce bacteriophage ?29 monomeric capsid protein and dimeric scaffolding protein to co-assemble to form particles which have the same geometry as either prolate T=3 Q=5 procapsids formed in vivo or previously observed isometric particles. The formation of particles is a scaffolding-dependent reaction. The balance between the fidelity and efficiency of assembly is controlled by the concentration of crowding agent and temperature. The assembly process is salt sensitive, suggesting that the interactions between the scaffolding and coat proteins are electrostatic. Three N-terminal ?29 scaffolding protein deletion mutants, Delta 1-9, Delta 1-15 and Delta 1-22, abolish the assembly activity. Circular dichroism spectra indicate that these N-terminal deletions are accompanied by a loss of helicity. The inability of these proteins to dimerize suggests that the N-terminal region of the scaffolding protein contributes to the dimer interface and maintains the structural integrity of the dimeric protein. Two C-terminal scaffolding protein deletion mutants, Delta 79-97 and Delta 62-97, also fail to promote assembly. However, the secondary structure and the dimerization ability of these mutants are unchanged relative to wild-type, which suggests that the C terminus is the likely site of interaction with the capsid protein.  相似文献   

20.
Full-length and N-terminal deletion mutants of human c-raf-1 cDNA were cloned into Escherichia coli expression plasmids. Bacterially expressed c-raf proteins were purified by anion-exchange, gel filtration, and affinity chromatography. Microinjection of mutant c-raf proteins into G0-arrested NIH 3T3 cells induced DNA synthesis and morphological transformation, whereas microinjection of full-length c-raf had no effect. The amino terminus of the raf protein has an important negative regulatory influence; alteration of this region resulted in increased kinase activity and oncogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号