首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The triplex of herpesvirus capsids is a unique structural element. In herpes simplex virus type 1 (HSV-1), one molecule of VP19C and two of VP23 form a three-pronged structure that acts to stabilize the capsid shell through interactions with adjacent VP5 molecules. The interaction between VP19C and VP23 was inferred by yeast cryoelectron microscopy studies and subsequently confirmed by the two-hybrid assay. In order to define the functional domains of VP19C and VP23, a Tn7-based transposon was used to randomly insert 15 bp into the coding regions of these two proteins. The mutants were initially screened for interaction in the yeast two-hybrid assay to identify the domains important for triplex formation. Using genetic complementation assays in HSV-1-infected cells, the domains of each protein required for virus replication were similarly uncovered. The same mutations that abolish interaction between these two proteins in the yeast two-hybrid assay similarly failed to complement the growth of the VP23- and VP19C-null mutant viruses in the genetic complementation assay. Some of these mutants were transferred into recombinant baculoviruses to analyze the effect of the mutations on herpesvirus capsid assembly in insect cells. The mutations that abolished the interaction in the yeast two-hybrid assay also abolished capsid assembly in insect cells. The outcome of these experiments showed that insertions in at least four regions and especially the amino terminus of VP23 abolished function, whereas the amino terminus of VP19C can tolerate transposon insertions. A novel finding of these studies was the ability to assemble herpesvirus capsids in insect cells using VP5 and VP19C that contained a histidine handle at their amino terminus.  相似文献   

2.
The unique N-terminal region of the parvovirus VP1 capsid protein is required for infectivity by the capsids but is not required for capsid assembly. The VP1 N terminus contains a number of groups of basic amino acids which resemble classical nuclear localization sequences, including a conserved sequence near the N terminus comprised of four basic amino acids, which in a peptide can act to transport other proteins into the cell nucleus. Testing with a monoclonal antibody recognizing residues 2 to 13 of VP1 (anti-VP1-2-13) and with a rabbit polyclonal serum against the entire VP1 unique region showed that the VP1 unique region was not exposed on purified capsids but that it became exposed after treatment of the capsids with heat (55 to 75 degrees C), or urea (3 to 5 M). A high concentration of anti-VP1-2-13 neutralized canine parvovirus (CPV) when it was incubated with the virus prior to inoculation of cells. Both antibodies blocked infection when injected into cells prior to virus inoculation, but neither prevented infection by coinjected infectious plasmid DNA. The VP1 unique region could be detected 4 and 8 h after the virus capsids were injected into cells, and that sequence exposure appeared to be correlated with nuclear transport of the capsids. To examine the role of the VP1 N terminus in infection, we altered that sequence in CPV, and some of those changes made the capsids inefficient at cell infection.  相似文献   

3.
Adeno-associated virus type 2 (AAV2) has proven to be a valuable vector for gene therapy. Characterization of the functional domains of the AAV capsid proteins can facilitate our understanding of viral tissue tropism, immunoreactivity, viral entry, and DNA packaging, all of which are important issues for generating improved vectors. To obtain a comprehensive genetic map of the AAV capsid gene, we have constructed 93 mutants at 59 different positions in the AAV capsid gene by site-directed mutagenesis. Several types of mutants were studied, including epitope tag or ligand insertion mutants, alanine scanning mutants, and epitope substitution mutants. Analysis of these mutants revealed eight separate phenotypes. Infectious titers of the mutants revealed four classes. Class 1 mutants were viable, class 2 mutants were partially defective, class 3 mutants were temperature sensitive, and class 4 mutants were noninfectious. Further analysis revealed some of the defects in the class 2, 3, and 4 mutants. Among the class 4 mutants, a subset completely abolished capsid formation. These mutants were located predominantly, but not exclusively, in what are likely to be beta-barrel structures in the capsid protein VP3. Two of these mutants were insertions at the N and C termini of VP3, suggesting that both ends of VP3 play a role that is important for capsid assembly or stability. Several class 2 and 3 mutants produced capsids that were unstable during purification of viral particles. One mutant, R432A, made only empty capsids, presumably due to a defect in packaging viral DNA. Additionally, five mutants were defective in heparan binding, a step that is believed to be essential for viral entry. These were distributed into two amino acid clusters in what is likely to be a cell surface loop in the capsid protein VP3. The first cluster spanned amino acids 509 to 522; the second was between amino acids 561 and 591. In addition to the heparan binding clusters, hemagglutinin epitope tag insertions identified several other regions that were on the surface of the capsid. These included insertions at amino acids 1, 34, 138, 266, 447, 591, and 664. Positions 1 and 138 were the N termini of VP1 and VP2, respectively; position 34 was exclusively in VP1; the remaining surface positions were located in putative loop regions of VP3. The remaining mutants, most of them partially defective, were presumably defective in steps of viral entry that were not tested in the preliminary screening, including intracellular trafficking, viral uncoating, or coreceptor binding. Finally, in vitro experiments showed that insertion of the serpin receptor ligand in the N-terminal regions of VP1 or VP2 can change the tropism of AAV. Our results provide information on AAV capsid functional domains and are useful for future design of AAV vectors for targeting of specific tissues.  相似文献   

4.
Herpes simplex virus type 1 (HSV-1) intermediate capsids are composed of seven proteins, VP5, VP19C, VP21, VP22a, VP23, VP24, and VP26, and the genes that encode these proteins, UL19, UL38, UL26, UL26.5, UL18, UL26, and UL35, respectively. The UL26 gene encodes a protease that cleaves itself and the product of the UL26.5 gene at a site (M site) 25 amino acids from the C terminus of these two proteins. In addition, the protease cleaves itself at a second site (R site) between amino acids 247 and 248. Cleavage of the UL26 protein gives rise to the capsid proteins VP21 and VP24, and cleavage of the UL26.5 protein gives rise to the capsid protein VP22a. Previously we described the production of HSV-1 capsids in insect cells by infecting the cells with recombinant baculoviruses expressing the six capsid genes (D. R. Thomsen, L. L. Roof, and F. L. Homa, J. Virol. 68:2442-2457, 1994). Using this system, we demonstrated that the products of the UL26 and/or UL26.5 genes are required as scaffolds for assembly of HSV-1 capsids. To better understand the functions of the UL26 and UL26.5 proteins in capsid assembly, we constructed baculoviruses that expressed altered UL26 and UL26.5 proteins. The ability of the altered UL26 and UL26.5 proteins to support HSV-1 capsid assembly was then tested in insect cells. Among the specific mutations tested were (i) deletion of the C-terminal 25 amino acids from the proteins coded for by the UL26 and UL26.5 genes; (ii) mutation of His-61 of the UL26 protein, an amino acid required for protease activity; and (iii) mutation of the R cleavage site of the UL26 protein. Analysis of the capsids formed with wild-type and mutant proteins supports the following conclusions: (i) the C-terminal 25 amino acids of the UL26 and UL26.5 proteins are required for capsid assembly; (ii) the protease activity associated with the UL26 protein is not required for assembly of morphologically normal capsids; and (iii) the uncleaved forms of the UL26 and UL26.5 proteins are employed in assembly of 125-nm-diameter capsids; cleavage of these proteins occurs during or subsequent to capsid assembly. Finally, we carried out in vitro experiments in which the major capsid protein VP5 was mixed with wild-type or truncated UL26.5 protein and then precipitated with a VP5-specific monoclonal antibody.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
VP23 is a key component of the triplex structure. The triplex, which is unique to herpesviruses, is a complex of three proteins, two molecules of VP23 which interact with a single molecule of VP19C. This structure is important for shell accretion and stability of the protein coat. Previous studies utilized a random transposition mutagenesis approach to identify functional domains of the triplex proteins. In this study, we expand on those findings to determine the key amino acids of VP23 that are required for triplex formation. Using alanine-scanning mutagenesis, we have made mutations in 79 of 318 residues of the VP23 polypeptide. These mutations were screened for function both in the yeast two-hybrid assay for interaction with VP19C and in a genetic complementation assay for the ability to support the replication of a VP23 null mutant virus. These assays identified a number of amino acids that, when altered, abolish VP23 function. Abrogation of virus assembly by a single-amino-acid change bodes well for future development of small-molecule inhibitors of this process. In addition, a number of mutations which localized to a C-terminal region of VP23 (amino acids 205 to 241) were still able to interact with VP19C but were lethal for virus replication when introduced into the herpes simplex virus 1 (HSV-1) KOS genome. The phenotype of many of these mutant viruses was the accumulation of large open capsid shells. This is the first demonstration of capsid shell accumulation in the presence of a lethal VP23 mutation. These data thus identify a new domain of VP23 that is required for or regulates capsid shell closure during virus assembly.  相似文献   

6.
VP26 is the smallest capsid protein and decorates the outer surface of the capsid shell of herpes simplex virus. It is located on the hexons at equimolar amounts with VP5. Its small size (112 amino acids) and high copy number make it an attractive molecule to use as a probe to investigate the complex pattern of capsid protein interactions. An in vitro capsid binding assay and a green fluorescent protein (GFP) localization assay were used to identify VP26 residues important for its interaction with capsids. To test for regions of VP26 that may be essential for binding to capsids, three small in-frame deletion mutations were generated in VP26, Delta18-25, Delta54-60, and Delta93-100. Their designations refer to the amino acids deleted by the mutation. The mutation at the C terminus of the molecule, which encompasses a region of highly conserved residues, abolished binding to the capsid and the localization of GFP to the nucleus in characteristic large puncta. Additional mutations revealed that a region of VP26 spanning from residue 50 to 112 was sufficient for the localization of the fused protein (VP26-GFP) to the nucleus and for it to bind to capsids. Using site-directed mutagenesis of conserved residues in VP26, two key residues for protein-protein interaction, F79 and G93, were identified as judged by the localization of GFP to nuclear puncta. When these mutations were analyzed in the capsid binding assay, they were also found to eliminate binding of VP26 to the capsid structure. Surprisingly, additional mutations that affected the ability of VP26 to bind to capsids in vitro were uncovered. Mutations at residues A58 and L64 resulted in a reduced ability of VP26 to bind to capsids. Mutation of the hydrophobic residues M78 and A80, which are adjacent to the hydrophobic residue F79, abolished VP26 capsid binding. In addition, the block of conserved amino acids in the carboxy end of the molecule had the most profound effect on the ability of VP26 to interact with capsids. Mutation of amino acid G93, L94, R95, R96, or T97 resulted in a greatly diminished ability of VP26 to bind capsids. Yet, all of these residues other than G93 were able to efficiently translocate or concentrate GFP into the nucleus, giving rise to the punctate fluorescence. Thus, the interaction of VP26 with the capsid appears to occur through at least two separate mechanisms. The initial interaction of VP26 and VP5 may occur in the cytoplasm or when VP5 is localized in the nucleus. Residues F79 and G93 are important for this bi-molecular interaction, resulting in the accumulation of VP26 in the nucleus in concentrated foci. Subsequent to this association, additional amino acids of VP26, including those in the C-terminal conserved domain, are important for interaction of VP26 with the three-dimensional capsid structure.  相似文献   

7.
The herpes simplex virus type 1 capsid is a protective shell that acts as a container for the genetic material of the virus. After assembly of the capsid, the viral DNA is translocated into the capsid interior through a channel formed by the portal. The portal is composed of a dodecamer of UL6 molecules which form a ring-like structure found at a single vertex within the icosahedron. Formation of portal-containing capsids minimally requires the four structural proteins (VP5, VP19C, VP23, and UL6) and a scaffolding protein (UL26.5). Recently, an interaction between UL26.5 and the portal has been identified, suggesting the scaffold functions by delivering the portal to the growing capsid shell. The aim of this study was to identify regions within UL26.5 required for its interaction with the portal. A specific region was identified by mutational analysis. Deletion of scaffold amino acids (aa) 143 to 151 was found to be sufficient to inhibit formation of the scaffold-portal complex as assayed in vitro. The aa 143 to 151 contain the sequence YYPGE, which is highly conserved among alpha herpesviruses. Although it did not bind to the portal, the Delta143-151 mutant was found to retain the ability to support assembly of morphologically normal capsids in vitro. Such capsids, however, did not contain the portal. The results suggest assembly of portal-containing capsids requires formation of a scaffold-portal complex in which intermolecular contact is dependent on scaffold aa 143 to 151.  相似文献   

8.
An essential step in assembly of herpes simplex virus (HSV) type 1 capsids involves interaction of the major capsid protein (VP5) with the C terminus of the scaffolding protein (encoded by the UL26.5 gene). The final 12 residues of the HSV scaffolding protein contains an A-X-X-F-V/A-X-Q-M-M-X-X-R motif which is conserved between scaffolding proteins found in other alphaherpesviruses but not in members of the beta- or gamma-herpesviruses. Previous studies have shown that the bovine herpesvirus 1 (alphaherpesvirus) UL26.5 homolog will functionally substitute for the HSV UL26.5 gene (E. J. Haanes et al., J. Virol. 69:7375-7379, 1995). The homolog of the UL26.5 gene in the human cytomegalovirus (HCMV) genome is the UL80.5 gene. In these studies, we tested whether the HCMV UL80.5 gene would substitute for the HSV UL26.5 gene in a baculovirus capsid assembly system that we have previously described (D. R. Thomsen et al., J. Virol. 68:2442-2457, 1994). The results demonstrate that (i) no intact capsids were assembled when the full-length or a truncated (missing the C-terminal 65 amino acids) UL80.5 protein was tested; (ii) when the C-terminal 65 amino acids of the UL80.5 protein were replaced with the C-terminal 25 amino acids of the UL26.5 protein, intact capsids were made and direct interaction of the UL80.5 protein with VP5 was detected; (iii) assembly of intact capsids was demonstrated when the sequence of the last 12 amino acids of the UL80.5 protein was changed from RRIFVA ALNKLE to RRIFVAAMMKLE; (iv) self-interaction of the scaffold proteins is mediated by sequences N terminal to the maturation cleavage site; and (v) the UL26.5 and UL80.5 proteins will not coassemble into scaffold structures. The results suggest that the UL26.5 and UL80.5 proteins form a scaffold by self-interaction via sequences in the N termini of the proteins and emphasize the importance of the C terminus for interaction of scaffold with the proteins that form the capsid shell.  相似文献   

9.
Coller KE  Lee JI  Ueda A  Smith GA 《Journal of virology》2007,81(21):11790-11797
How alphaherpesvirus capsids acquire tegument proteins remains a key question in viral assembly. Using pseudorabies virus (PRV), we have previously shown that the 62 carboxy-terminal amino acids of the VP1/2 large tegument protein are essential for viral propagation and when transiently expressed as a fusion to green fluorescent protein relocalize to nuclear capsid assemblons following viral infection. Here, we show that localization of the VP1/2 capsid-binding domain (VP1/2cbd) into assemblons is conserved in herpes simplex virus type 1 (HSV-1) and that this recruitment is specifically on capsids. Using a mutant virus screen, we find that the protein product of the UL25 gene is essential for VP1/2cbd association with capsids. An interaction between UL25 and VP1/2 was corroborated by coimmunoprecipitation from cells transiently expressing either HSV-1 or PRV proteins. Taken together, these findings suggest that the essential function of the VP1/2 carboxy terminus is to anchor the VP1/2 tegument protein to capsids. Furthermore, UL25 encodes a multifunctional capsid protein involved in not only encapsidation, as previously described, but also tegumentation.  相似文献   

10.
Cell-free assembly of the herpes simplex virus capsid.   总被引:18,自引:18,他引:0       下载免费PDF全文
Herpes simplex virus type 1 (HSV-1) capsids were found to assemble spontaneously in a cell-free system consisting of extracts prepared from insect cells that had been infected with recombinant baculoviruses coding for HSV-1 capsid proteins. The capsids formed in this system resembled native HSV-1 capsids in morphology as judged by electron microscopy, in sedimentation rate on sucrose density gradients, in protein composition, and in their ability to react with antibodies specific for the HSV-1 major capsid protein, VP5. Optimal capsid assembly required the presence of extracts containing capsid proteins VP5, VP19, VP23, VP22a, and the maturational protease (product of the UL26 gene). Assembly was more efficient at 27 degrees C than at 4 degrees C. The availability of a cell-free assay for HSV-1 capsid formation will be of help in identifying the morphogenetic steps that occur during capsid assembly in vivo and in evaluating candidate antiherpes therapeutics directed at capsid assembly.  相似文献   

11.
P Desai  S C Watkins    S Person 《Journal of virology》1994,68(9):5365-5374
Herpes simplex virus type 1 (HSV-1) B capsids are composed of seven proteins, designated VP5, VP19C, 21, 22a, VP23, VP24, and VP26 in order of decreasing molecular weight. Three proteins (21, 22a, and VP24) are encoded by a single open reading frame (ORF), UL26, and include a protease whose structure and function have been studied extensively by other investigators. The protease encoded by this ORF generates VP24 (amino acids 1 to 247), a structural component of the capsid and mature virions, and 21 (residues 248 to 635). The protease also cleaves C-terminal residues 611 to 635 of 21 and 22a, during capsid maturation. Protease activity has been localized to the N-terminal 247 residues. Protein 22a and probably the less abundant protein 21 occupy the internal volume of capsids but are not present in virions; therefore, they may form a scaffold that is used for B capsid assembly. The objective of the present study was to isolate and characterize a mutant virus with a null mutation in UL26. Vero cells were transformed with plasmid DNA that encoded ORF UL25 through UL28 and screened for their ability to support the growth of a mutant virus with a null mutation in UL27 (K082). Four of five transformants that supported the growth of the UL27 mutant also supported the growth of a UL27-UL28 double mutant. One of these transformants (F3) was used to isolate a mutant with a null mutation in UL26. The UL26 null mutation was constructed by replacement of DNA sequences specifying codons 41 through 593 with a lacZ reporter cassette. Permissive cells were cotransfected with plasmid and wild-type virus DNA, and progeny viruses were screened for their ability to grow on F3 but not Vero cells. A virus with these growth characteristics, designated KUL26 delta Z, that did not express 21, 22a, or VP24 during infection of Vero cells was isolated. Radiolabeled nuclear lysates from infected nonpermissive cells were layered onto sucrose gradients and subjected to velocity sedimentation. A peak of radioactivity for KUL26 delta Z that sedimented more rapidly than B capsids from wild-type-infected cells was observed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the gradient fractions showed that the peak fractions contained VP5, VP19C, VP23, and VP26. Analysis of sectioned cells and of the peak fractions of the gradients by electron microscopy revealed sheet and spiral structures that appear to be capsid shells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Role of the UL25 protein in herpes simplex virus DNA encapsidation   总被引:1,自引:0,他引:1       下载免费PDF全文
The herpes simplex virus protein UL25 attaches to the external vertices of herpes simplex virus type 1 capsids and is required for the stable packaging of viral DNA. To define regions of the protein important for viral replication and capsid attachment, the 580-amino-acid UL25 open reading frame was disrupted by transposon mutagenesis. The UL25 mutants were assayed for complementation of a UL25 deletion virus, and in vitro-synthesized protein was tested for binding to UL25-deficient capsids. Of the 11 mutants analyzed, 4 did not complement growth of the UL25 deletion mutant, and analysis of these and additional mutants in the capsid-binding assay demonstrated that UL25 amino acids 1 to 50 were sufficient for capsid binding. Several UL25 mutations were transferred into recombinant viruses to analyze the effect of the mutations on UL25 capsid binding and on DNA cleavage and packaging. Studies of these mutants demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids and that the C terminus is essential for DNA packaging and the production of infectious virus through its interactions with other viral packaging or tegument proteins. Analysis of viral DNA cleavage demonstrated that in the absence of a functional UL25 protein, aberrant cleavage takes place at the unique short end of the viral genome, resulting in truncated viral genomes that are not retained in capsids. Based on these observations, we propose a model where UL25 is required for the formation of DNA-containing capsids by acting to stabilize capsids that contain full-length viral genomes.  相似文献   

13.
Wang WH  Chang LK  Liu ST 《Journal of virology》2011,85(4):1615-1624
The capsids of herpesviruses, which comprise major and minor capsid proteins, have a common icosahedral structure with 162 capsomers. An electron microscopic study shows that Epstein-Barr virus (EBV) capsids in the nucleus are immunolabeled by anti-BDLF1 and anti-BORF1 antibodies, indicating that BDLF1 and BORF1 are the minor capsid proteins of EBV. Cross-linking and electrophoresis studies of purified BDLF1 and BORF1 revealed that these two proteins form a triplex that is similar to that formed by the minor capsid proteins, VP19C and VP23, of herpes simplex virus type 1 (HSV-1). Although the interaction between VP23, a homolog of BDLF1, and the major capsid protein VP5 could not be verified biochemically in earlier studies, the interaction between BDLF1 and the EBV major capsid protein, viral capsid antigen (VCA), can be confirmed by glutathione S-transferase (GST) pulldown assay and coimmunoprecipitation. Additionally, in HSV-1, VP5 interacts with only the middle region of VP19C; in EBV, VCA interacts with both the N-terminal and middle regions of BORF1, a homolog of VP19C, revealing that the proteins in the EBV triplex interact with the major capsid protein differently from those in HSV-1. A GST pulldown study also identifies the oligomerization domains in VCA and the dimerization domain in BDLF1. The results presented herein reveal how the EBV capsid proteins interact and thereby improve our understanding of the capsid structure of the virus.  相似文献   

14.
D R Thomsen  L L Roof    F L Homa 《Journal of virology》1994,68(4):2442-2457
The capsid of herpes simplex virus type 1 (HSV-1) is composed of seven proteins, VP5, VP19C, VP21, VP22a, VP23, VP24, and VP26, which are the products of six HSV-1 genes. Recombinant baculoviruses were used to express the six capsid genes (UL18, UL19, UL26, UL26.5, UL35, and UL38) in insect cells. All constructs expressed the appropriate-size HSV proteins, and insect cells infected with a mixture of the six recombinant baculoviruses contained large numbers of HSV-like capsids. Capsids were purified by sucrose gradient centrifugation, and electron microscopy showed that the capsids made in Sf9 cells had the same size and appearance as authentic HSV B capsids. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the protein composition of these capsids was nearly identical to that of B capsids isolated from HSV-infected Vero cells. Electron microscopy of thin sections clearly demonstrated that the capsids made in insect cells contained the inner electron-translucent core associated with HSV B capsids. In infections in which single capsid genes were left out, it was found that the UL18 (VP23), UL19 (VP5), UL38 (VP19C), and either the UL26 (VP21 and VP24) or the UL26.5 (VP22a) genes were required for assembly of 100-nm capsids. VP22a was shown to form the inner core of the B capsid, since in infections in which the UL26.5 gene was omitted the 100-nm capsids that formed lacked the inner core. The UL35 (VP26) gene was not required for assembly of 100-nm capsids, although assembly of B capsids was more efficient when it was present. These and other observations indicate that (i) the products of the UL18, UL19, UL35, and UL38 genes self-assemble into structures that form the outer surface (icosahedral shell) of the capsid, (ii) the products of the UL26 and/or UL26.5 genes are required (as scaffolds) for assembly of 100-nm capsids, and (iii) the interaction of the outer surface of the capsid with the scaffolding proteins requires the product of the UL18 gene (VP23).  相似文献   

15.
Significant advances have been made in understanding hepatitis C virus (HCV) replication through development of replicon systems. However, neither replicon systems nor standard cell culture systems support significant assembly of HCV capsids, leaving a large gap in our knowledge of HCV virion formation. Recently, we established a cell-free system in which over 60% of full-length HCV core protein synthesized de novo in cell extracts assembles into HCV capsids by biochemical and morphological criteria. Here we used mutational analysis to identify residues in HCV core that are important for capsid assembly in this highly reproducible cell-free system. We found that basic residues present in two clusters within the N-terminal 68 amino acids of HCV core played a critical role, while the uncharged linker domain between them was not. Furthermore, the aspartate at position 111, the region spanning amino acids 82 to 102, and three serines that are thought to be sites of phosphorylation do not appear to be critical for HCV capsid formation in this system. Mutation of prolines important for targeting of core to lipid droplets also failed to alter HCV capsid assembly in the cell-free system. In addition, wild-type HCV core did not rescue assembly-defective mutants. These data constitute the first systematic and quantitative analysis of the roles of specific residues and domains of HCV core in capsid formation.  相似文献   

16.
C Reynolds  D Birnby    M Chow 《Journal of virology》1992,66(3):1641-1648
Poliovirus mutants in neutralizing antigenic site 3B were constructed by replacing the glutamic acid residue at amino acid 74 of capsid protein VP2 (VP2074E), using site-specific mutagenesis methods. All viable mutants display small-plaque phenotypes. Characterization of these mutants indicates that capsid assembly is perturbed. Although the defect in capsid assembly reduces the yield of mutant virus particles per cell, the resultant assembled particle is wild-type-like in structure and infectivity. Analyses of capsid assembly intermediates show a transient accumulation of the unprocessed capsid protein precursor, P1, indicating that cleavage of the mutant P1 by the 3CD protease is retarded. The mutant VP0-VP3-VP1 complex generated upon P1 cleavage appears assembly competent, forming pentamer and empty capsid assembly intermediates and infectious virion particles. Although the structure of the infectious mutant virus is virtually identical with that of the wild-type virus, the thermal stability of the mutant virus is dramatically increased over that of the wild-type virus. Thus, mutations at this residue are pleiotropic, altering the kinetics of capsid assembly and generating a virus that is more thermostable and more resistant to neutralization by the site 3B monoclonal antibodies.  相似文献   

17.
Adeno-associated virus type 2 (AAV2) capsids show 12 pores at the fivefold axes of symmetry. We mutated amino acids which constitute these pores to investigate possible functions of these structures within the AAV2 life cycle. Mutants with alterations in conserved residues were impaired mainly in genome packaging or infectivity, whereas few mutants were affected in capsid assembly. The packaging phenotype was characterized by increased capsid-per-genome ratios. Analysis of capsid-associated DNA versus encapsidated DNA revealed that this observation was due to reduced and not partial DNA encapsidation. Most mutants with impaired infectivity showed a decreased capability to expose their VP1 N termini. As a consequence, the activation of phospholipase A2 (PLA2) activity, which is essential for efficient infection, was affected on intact capsids. In a few mutants, the exposure of VP1 N termini and the development of PLA2 activity were associated with enhanced capsid instability, which is obviously also deleterious for virus infection. Therefore, PLA2 activity seems to be required on intact capsids for efficient infection. In conclusion, these results suggest that the pores at the fivefold axes function not only as portals for AAV2 single-stranded DNA packaging but also as channels for presentation of the PLA2 domain on AAV2 virions during infection.  相似文献   

18.
The herpes simplex virus (HSV) triplex is a complex of three protein subunits, VP19C and a dimer of VP23 that is essential for capsid assembly. We have derived HSV-1 recombinant viruses that contain monomeric red fluorescent protein (mRFP1), a Flu hemagglutinin (HA) epitope, and a six-histidine tag fused to the amino terminus of VP19C. These viruses were capable of growth on Vero cells, indicating that the amino terminus of VP19C could tolerate these fusions. By use of immunoelectron microscopy methods, capsids that express VP19C-mRFP but not VP19C-HA were labeled with gold particles when incubated with the corresponding antibody. Our conclusion from the data is that a large tag at the N terminus of VP19C was sufficiently exposed on the capsid surface for polyclonal antibody reactivity, while the small HA epitope was inaccessible to the antibody. These data indicate that an epitope tag at the amino terminus of VP19C is not exposed at the capsid surface for reactivity to its antibody.  相似文献   

19.
Adeno-associated virus type 2 (AAV2) has gained much interest as a gene delivery vector. A hallmark of AAV2-mediated gene transfer is an intracellular conformational change of the virus capsid, leading to the exposure of infection-relevant protein domains. These protein domains, which are located on the N-terminal portion of the structural proteins VP1 and VP2, include a catalytic phospholipase A(2) domain and three clusters of basic amino acids. We have identified additional protein sequence motifs located on the VP1/2 N terminus that also proved to be obligatory for virus infectivity. These motifs include signals that are known to be involved in protein interaction, endosomal sorting and signal transduction in eukaryotic cells. Among different AAV serotypes they are highly conserved and mutation of critical amino acids of the respective motifs led to a severe infection-deficient phenotype. In particular, mutation of a YXXQ-sequence motif significantly reduced accumulation of virus capsids around the nucleus in comparison to wild-type AAV2. Interestingly, intracellular trafficking of AAV2 was shown to be independent of PLA(2) activity. Moreover, mutation of three PDZ-binding motifs, which are located consecutively at the very tip of the VP1 N terminus, revealed a nuclear transport-defective phenotype, suggesting a role in nuclear uptake of the virus through an as-yet-unknown mechanism.  相似文献   

20.
We previously reported that empty capsids of B19 parvovirus were formed by the major capsid protein (VP2) alone expressed in a baculovirus system, but the minor capsid protein (VP1), longer by 227 amino acids, alone did not form empty capsids. We report here further investigations of the constraints on capsid formation by truncated versions of VP1. Studies were performed with recombinant baculoviruses expressed in Sf9 cells. Severely shortened VP1, extended beyond the VP2 core sequence by about 70 amino acids of the unique region, formed capsids normal in appearance; longer versions of VP1 also formed capsids but did so progressively less efficiently and produced capsids of more markedly dysmorphic appearance as the VP1-unique region was lengthened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号